scholarly journals Magnetopause reconnection layer bounded by switch-off shocks: Part 2. Pressure anisotropy

2016 ◽  
Vol 121 (10) ◽  
pp. 9940-9955
Author(s):  
Bengt Sonnerup ◽  
Stein Haaland ◽  
Götz Paschmann ◽  
Tai Phan ◽  
Stefan Eriksson



1995 ◽  
Vol 15 (8-9) ◽  
pp. 501-506 ◽  
Author(s):  
D.W Walthour ◽  
B.U.Ö Sonnerup ◽  
C.T Russell


2016 ◽  
Vol 43 (10) ◽  
pp. 4716-4724 ◽  
Author(s):  
J. P. Eastwood ◽  
T. D. Phan ◽  
P. A. Cassak ◽  
D. J. Gershman ◽  
C. Haggerty ◽  
...  


2007 ◽  
Vol 112 (A11) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. A. Fuselier ◽  
S. M. Petrinec ◽  
K. J. Trattner ◽  
M. Fujimoto ◽  
H. Hasegawa


2021 ◽  
Vol 87 (3) ◽  
Author(s):  
Joseph Olson ◽  
Jan Egedal ◽  
Michael Clark ◽  
Douglass A. Endrizzi ◽  
Samuel Greess ◽  
...  

Magnetic reconnection is explored on the Terrestrial Reconnection Experiment (TREX) for asymmetric inflow conditions and in a configuration where the absolute rate of reconnection is set by an external drive. Magnetic pileup enhances the upstream magnetic field of the high-density inflow, leading to an increased upstream Alfvén speed and helping to lower the normalized reconnection rate to values expected from theoretical consideration. In addition, a shock interface between the far upstream supersonic plasma inflow and the region of magnetic flux pileup is observed, important to the overall force balance of the system, thereby demonstrating the role of shock formation for configurations including a supersonically driven inflow. Despite the specialized geometry where a strong reconnection drive is applied from only one side of the reconnection layer, previous numerical and theoretical results remain robust and are shown to accurately predict the normalized rate of reconnection for the range of system sizes considered. This experimental rate of reconnection is dependent on system size, reaching values as high as 0.8 at the smallest normalized system size applied.



2016 ◽  
Vol 23 (9) ◽  
pp. 092901 ◽  
Author(s):  
A. V. Artemyev ◽  
I. Y. Vasko ◽  
V. Angelopoulos ◽  
A. Runov


2013 ◽  
Vol 20 (3) ◽  
pp. 365-377 ◽  
Author(s):  
W. Lyatsky ◽  
M. L. Goldstein

Abstract. We present here the results of a study of interacting magnetic fields that involves a force normal to the reconnection layer. In the presence of such force, the reconnection layer becomes unstable to interchange disturbances. The interchange instability results in formation of tongues of heated plasma that leaves the reconnection layer through its wide surface rather than through its narrow ends, as is the case in traditional magnetic reconnection models. This plasma flow out of the reconnection layer facilitates the removal of plasma from the layer and leads to fast reconnection. The proposed mechanism provides fast reconnection of interacting magnetic fields and does not depend on the thickness of the reconnection layer. This instability explains the strong turbulence and bidirectional streaming of plasma that is directed toward and away from the reconnection layer that is observed frequently above reconnection layers. The force normal to the reconnection layer also accelerates the removal of plasma islands appearing in the reconnection layer during turbulent reconnection. In the presence of this force normal to the reconnection layer, these islands are removed from the reconnection layer by the "buoyancy force", as happens in the case of interchange instability that arises due to the polarization electric field generated at the boundaries of the islands.



1974 ◽  
Vol 79 (10) ◽  
pp. 1546-1549 ◽  
Author(s):  
B. U. Ö Sonnerup


Sign in / Sign up

Export Citation Format

Share Document