reconnection layer
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
G. Paschmann ◽  
B. U. Ö. Sonnerup ◽  
T. Phan ◽  
S. A. Fuselier ◽  
S. Haaland ◽  
...  

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
Joseph Olson ◽  
Jan Egedal ◽  
Michael Clark ◽  
Douglass A. Endrizzi ◽  
Samuel Greess ◽  
...  

Magnetic reconnection is explored on the Terrestrial Reconnection Experiment (TREX) for asymmetric inflow conditions and in a configuration where the absolute rate of reconnection is set by an external drive. Magnetic pileup enhances the upstream magnetic field of the high-density inflow, leading to an increased upstream Alfvén speed and helping to lower the normalized reconnection rate to values expected from theoretical consideration. In addition, a shock interface between the far upstream supersonic plasma inflow and the region of magnetic flux pileup is observed, important to the overall force balance of the system, thereby demonstrating the role of shock formation for configurations including a supersonically driven inflow. Despite the specialized geometry where a strong reconnection drive is applied from only one side of the reconnection layer, previous numerical and theoretical results remain robust and are shown to accurately predict the normalized rate of reconnection for the range of system sizes considered. This experimental rate of reconnection is dependent on system size, reaching values as high as 0.8 at the smallest normalized system size applied.


2020 ◽  
Vol 47 (22) ◽  
Author(s):  
J. Ng ◽  
L.‐J. Chen ◽  
A. Le ◽  
A. Stanier ◽  
S. Wang ◽  
...  

2020 ◽  
Author(s):  
Xiaocan Li ◽  
Fan Guo

<p>Magnetic reconnection is a primary driver of magnetic energy release and particle acceleration processes in space and astrophysical plasmas. Solar flares are a great example where observations have suggested that a large fraction of magnetic energy is converted into nonthermal particles and radiation. One of the major unsolved problems in reconnection studies is nonthermal particle acceleration. In the past decade or two, 2D kinetic simulations have been widely used and have identified several acceleration mechanisms in reconnection. Recent 3D simulations have shown that the reconnection layer naturally generates magnetic turbulence. Here we report our recent progresses in building a macroscopic model that includes these physics for explaining particle acceleration during solar flares. We show that, for sufficient large systems, high-energy particle acceleration processes can be well described as flow compression and shear. By means of 3D kinetic simulations, we found that the self-generated turbulence is essential for the formation of power-law electron energy spectrum in non-relativistic reconnection. Based on these results, we then proceed to solve an energetic particle transport equation in a compressible reconnection layer provided by high-Lundquist-number MHD simulations. Due to the compression effect, particles are accelerated to high energies and develop power-law energy distributions. The power-law index and maximum energy are both comparable to solar flare observations. This study clarifies the nature of particle acceleration in large-scale reconnection sites and initializes a framework for studying large-scale particle acceleration during solar flares.</p>


2019 ◽  
Vol 492 (1) ◽  
pp. 549-555 ◽  
Author(s):  
I M Christie ◽  
M Petropoulou ◽  
L Sironi ◽  
D Giannios

ABSTRACT Blazar emission models based on magnetic reconnection succeed in reproducing many observed spectral and temporal features, including the short-duration luminous flaring events. Plasmoids, a self-consistent by-product of the tearing instability in the reconnection layer, can be the main source of blazar emission. Kinetic simulations of relativistic reconnection have demonstrated that plasmoids are characterized by rough energy equipartition between their radiating particles and magnetic fields. This is the main reason behind the apparent shortcoming of plasmoid-dominated emission models to explain the observed Compton ratios of BL Lac objects. Here, we demonstrate that the radiative interactions among plasmoids, which have been neglected so far, can assist in alleviating this contradiction. We show that photons emitted by large, slow-moving plasmoids can be a potentially important source of soft photons to be then upscattered, via inverse Compton, by small fast-moving, neighbouring plasmoids. This interplasmoid Compton scattering process can naturally occur throughout the reconnection layer, imprinting itself as an increase in the observed Compton ratios from those short and luminous plasmoid-powered flares within BL Lac sources, while maintaining energy equipartition between radiating particles and magnetic fields.


2018 ◽  
Vol 36 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Song Fu ◽  
Shiyong Huang ◽  
Meng Zhou ◽  
Binbin Ni ◽  
Xiaohua Deng

Abstract. It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed. Keywords. Space plasma physics (magnetic reconnection)


2018 ◽  
Vol 63 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Qinghe Zhang ◽  
Michael Lockwood ◽  
John C. Foster ◽  
Qiugang Zong ◽  
Malcolm W. Dunlop ◽  
...  

2016 ◽  
Vol 121 (10) ◽  
pp. 9940-9955
Author(s):  
Bengt Sonnerup ◽  
Stein Haaland ◽  
Götz Paschmann ◽  
Tai Phan ◽  
Stefan Eriksson

2016 ◽  
Vol 121 (4) ◽  
pp. 3310-3332 ◽  
Author(s):  
Bengt Sonnerup ◽  
Götz Paschmann ◽  
Stein Haaland ◽  
Tai Phan ◽  
Stefan Eriksson

Sign in / Sign up

Export Citation Format

Share Document