dayside magnetopause
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 41)

H-INDEX

42
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jason M H Beedle ◽  
Daniel J Gershman ◽  
Vadim M Uritsky ◽  
Tai D Phan ◽  
Barbara L. Giles
Keyword(s):  

Author(s):  
Matteo Faganello ◽  
Manuela Sisti ◽  
Francesco Califano ◽  
Benoit Lavraud

Abstract A 3D two-fluid simulation, using plasma parameters as measured by MMS on September 8th 2015, shows the nonlinear development of the Kelvin-Helmholtz instability at the Earth’s magnetopause. It shows an extremely rich dynamics, including the development of a complex magnetic topology, vortex merging and secondary instabilities. Vortex induced and mid-latitude magnetic reconnection coexist and produce an asymmetric distribution of magnetic reconnection events. Off-equator reconnection exhibits a predominance of events in the southern hemisphere during the early nonlinear phase, as observed by satellites at the dayside magnetopause. The late nonlinear phase shows the development of vortex pairing for all latitudes while secondary Kelvin-Helmholtz instability develops only in the northern hemisphere leading to an enhancement of the occurrence of off-equator reconnection there. Since vortices move tailward while evolving, this suggests that reconnection events in the northern hemisphere should dominate at the nightside magnetopause.


Author(s):  
P. A. Delamere ◽  
N. P. Barnes ◽  
X. Ma ◽  
J. R. Johnson

The flow shear-driven Kelvin-Helmholtz (KH) instability is ubiquitous in planetary magnetospheres. At Earth these surface waves are important along the dawn and dusk flanks of the magnetopause boundary while at Jupiter and Saturn the entire dayside magnetopause boundary can exhibit KH activity due to corotational flows in the magnetosphere. Kelvin-Helmholtz waves can be a major ingredient in the so-called viscous-like interaction with the solar wind. In this paper, we review the KH instability from the perspective of hybrid (kinetic ions, fluid electrons) simulations. Many of the simulations are based on parameters typically found at Saturn’s magnetopause boundary, but the results can be generally applied to any KH-unstable situation. The focus of the discussion is on the ion kinetic scale and implications for mass, momentum, and energy transport at the magnetopause boundary.


Author(s):  
Weijie Sun ◽  
Ryan M. Dewey ◽  
Sae Aizawa ◽  
Jia Huang ◽  
James A. Slavin ◽  
...  

AbstractThis review paper summarizes the research of Mercury’s magnetosphere in the Post-MESSENGER era and compares its dynamics to those in other planetary magnetospheres, especially to those in Earth’s magnetosphere. This review starts by introducing the planet Mercury, including its interplanetary environment, magnetosphere, exosphere, and conducting core. The frequent and intense magnetic reconnection on the dayside magnetopause, which is represented by the flux transfer event “shower”, is reviewed on how they depend on magnetosheath plasma β and magnetic shear angle across the magnetopause, following by how it contributes to the flux circulation and magnetosphere-surface-exosphere coupling. In the next, Mercury’s magnetosphere under extreme solar events, including the core induction and the reconnection erosion on the dayside magnetosphere, the responses of the nightside magnetosphere, are reviewed. Then, the dawn-dusk properties of the plasma sheet, including the features of the ions, the structure of the current sheet, and the dynamics of magnetic reconnection, are summarized. The last topic is devoted to the particle energization in Mercury’s magnetosphere, which includes the energization of the Kelvin-Helmholtz waves on the magnetopause boundaries, reconnection-generated magnetic structures, and the cross-tail electric field. In each chapter, the last section discusses the open questions related to each topic, which can be considered by the simulations and the future spacecraft mission. We end this paper by summarizing the future BepiColombo opportunities, which is a joint mission of ESA and JAXA and is en route to Mercury.


2021 ◽  
Author(s):  
Weijie Sun ◽  
James A. Slavin ◽  
Rumi Nakamura ◽  
Daniel Heyner ◽  
Karlheinz J. Trattner ◽  
...  

Abstract. This study analyzes the flux transfer event (FTE)-type flux ropes and magnetic reconnection around the dayside magnetopause during BepiColombo’s Earth flyby. The magnetosheath corresponds to a high plasma β (~ 8) and the IMF has a significant radial component. Six flux ropes are identified. The motion of flux rope together with the maximum magnetic shear model suggests that the reconnection X-line swipes BepiColombo near the magnetic equator due to an increase of the radial IMF. The flux rope with the highest flux content contains a clear coalescence signature, i.e., two smaller flux ropes merging, supporting theoretical predictions the flux content of flux ropes can grow through coalescence. The secondary reconnection associated with coalescence exhibits a large normalized guide field and a reconnection rate comparable to the reconnection rate measured at the magnetopause (~ 0.1).


Author(s):  
G. Paschmann ◽  
B. U. Ö. Sonnerup ◽  
T. Phan ◽  
S. A. Fuselier ◽  
S. Haaland ◽  
...  

Author(s):  
Ying Zou ◽  
Brian M. Walsh ◽  
Xueling Shi ◽  
Larry Lyons ◽  
Jiang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document