Protease Substrate Profiling

Enzyme Assays ◽  
2006 ◽  
pp. 303-331
Author(s):  
Jennifer L. Harris
Keyword(s):  
1994 ◽  
Vol 68 (9) ◽  
pp. 5384-5394 ◽  
Author(s):  
L Matusick-Kumar ◽  
W Hurlburt ◽  
S P Weinheimer ◽  
W W Newcomb ◽  
J C Brown ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Rodrigo Ochoa ◽  
Mikhail Magnitov ◽  
Roman A. Laskowski ◽  
Pilar Cossio ◽  
Janet M. Thornton

Abstract Background Proteases are key drivers in many biological processes, in part due to their specificity towards their substrates. However, depending on the family and molecular function, they can also display substrate promiscuity which can also be essential. Databases compiling specificity matrices derived from experimental assays have provided valuable insights into protease substrate recognition. Despite this, there are still gaps in our knowledge of the structural determinants. Here, we compile a set of protease crystal structures with bound peptide-like ligands to create a protocol for modelling substrates bound to protease structures, and for studying observables associated to the binding recognition. Results As an application, we modelled a subset of protease–peptide complexes for which experimental cleavage data are available to compare with informational entropies obtained from protease–specificity matrices. The modelled complexes were subjected to conformational sampling using the Backrub method in Rosetta, and multiple observables from the simulations were calculated and compared per peptide position. We found that some of the calculated structural observables, such as the relative accessible surface area and the interaction energy, can help characterize a protease’s substrate recognition, giving insights for the potential prediction of novel substrates by combining additional approaches. Conclusion Overall, our approach provides a repository of protease structures with annotated data, and an open source computational protocol to reproduce the modelling and dynamic analysis of the protease–peptide complexes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eric J. Hsu ◽  
Xuezhi Cao ◽  
Benjamin Moon ◽  
Joonbeom Bae ◽  
Zhichen Sun ◽  
...  

AbstractAs a potent lymphocyte activator, interleukin-2 (IL-2) is an FDA-approved treatment for multiple metastatic cancers. However, its clinical use is limited by short half-life, low potency, and severe in vivo toxicity. Current IL-2 engineering strategies exhibit evidence of peripheral cytotoxicity. Here, we address these issues by engineering an IL-2 prodrug (ProIL2). We mask the activity of a CD8 T cell-preferential IL-2 mutein/Fc fusion protein with IL2 receptor beta linked to a tumor-associated protease substrate. ProIL2 restores activity after cleavage by tumor-associated enzymes, and preferentially activates inside tumors, where it expands antigen-specific CD8 T cells. This significantly reduces IL-2 toxicity and mortality without compromising antitumor efficacy. ProIL2 also overcomes resistance of cancers to immune checkpoint blockade. Lastly, neoadjuvant ProIL2 treatment can eliminate metastatic cancer through an abscopal effect. Taken together, our approach presents an effective tumor targeting therapy with reduced toxicity.


2021 ◽  
Author(s):  
Evangelos Bisyris ◽  
Eleni Zingkou ◽  
Golfo G Kordopati ◽  
Minos-Timotheos Matsoukas ◽  
Plato A. Magriotis ◽  
...  

We applied a new in silico approach for fishing protease-substrate motifs to design a kallirein 7 (KLK7)-specific phosphonate activity-based probe (ABP) to quantify the active KLK7 in situ. Epidermal application...


PROTEOMICS ◽  
2005 ◽  
Vol 5 (5) ◽  
pp. 1292-1298 ◽  
Author(s):  
Dhaval N. Gosalia ◽  
Cleo M. Salisbury ◽  
Dustin J. Maly ◽  
Jonathan A. Ellman ◽  
Scott L. Diamond

2001 ◽  
Vol 34 (11) ◽  
pp. 1397-1403 ◽  
Author(s):  
M.A.F. Anéas ◽  
F.C.V. Portaro ◽  
I. Lebrun ◽  
L. Juliano ◽  
M.S. Palma ◽  
...  

2016 ◽  
Vol 397 (9) ◽  
pp. 837-856 ◽  
Author(s):  
Claire H. Wilson ◽  
Hui Emma Zhang ◽  
Mark D. Gorrell ◽  
Catherine A. Abbott

Abstract The enzyme members of the dipeptidyl peptidase 4 (DPP4) gene family have the very unusual capacity to cleave the post-proline bond to release dipeptides from the N-terminus of peptide/protein substrates. DPP4 and related enzymes are current and potential therapeutic targets in the treatment of type II diabetes, inflammatory conditions and cancer. Despite this, the precise biological function of individual dipeptidyl peptidases (DPPs), other than DPP4, and knowledge of their in vivo substrates remains largely unknown. For many years, identification of physiological DPP substrates has been difficult due to limitations in the available tools. Now, with advances in mass spectrometry based approaches, we can discover DPP substrates on a system wide-scale. Application of these approaches has helped reveal some of the in vivo natural substrates of DPP8 and DPP9 and their unique biological roles. In this review, we provide a general overview of some tools and approaches available for protease substrate discovery and their applicability to the DPPs with a specific focus on DPP9 substrates. This review provides comment upon potential approaches for future substrate elucidation.


2003 ◽  
Vol 309 (4) ◽  
pp. 974-979 ◽  
Author(s):  
Priyaranjan Pattanaik ◽  
Bimba Jain ◽  
Gudihal Ravindra ◽  
Hosahudya N Gopi ◽  
Prajna P Pal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document