Interface Magnon-Plasmon Polaritons and Total Transmission of Electromagnetic Waves Through a Semiconductor/Antiferromagnet Layered Structure

Author(s):  
S. D. Khanin ◽  
A. I. Vanin ◽  
Yu. A. Kumzerov ◽  
V. G. Solovyev ◽  
A. V. Cvetkov ◽  
...  

The article studies the propagation of electromagnetic waves in metal-dielectric systems based on opals. We revealed anomalous transmission and absorption of light by hybrid plasmon- photonic layered heterostructures associated with the excitation of surface plasmon polaritons propagating along the metal-dielectric interface. The position of maxima in the reflection spectra of nanocomposites, obtained by filling the opal matrix with metal by the electrothermodiffusion method, is explained by the Bragg diffraction, and the asymmetric form of the spectral curves is attributed to the Fano resonance.


2019 ◽  
Vol 48 (4) ◽  
pp. 567-581 ◽  
Author(s):  
Jiamin Liu ◽  
Zia Ullah Khan ◽  
Siamak Sarjoghian

Abstract Theory of five kinds of layered structure THz waveguides is presented. In these waveguides, the modified and hybrid THz surface plasmon-polaritons (SPPs) are researched in detail. On these modes, the effects of material in each layer are discussed. The anti-resonant reflecting mechanism is also discussed in these waveguides. The mode characteristics of both TM mode and TE mode are analyzed for guiding TM mode with low loss and TE modes with huge loss in one waveguide: the TE modes filter application is put forward. The mode characteristics for one waveguide have useful sensor applications: for TE1 mode, we find that the low cut-off frequency has a sensitivity (S) to the refractive index of the dielectric slab. The highest S can be 666.7 GHz/RIU when n2 = 1.5, w = 0 and t = 0.1 mm. We believe these results are very useful for designing practical THz devices for SPPs, filter and sensor applications.


2016 ◽  
Vol 2 (3) ◽  
pp. e1501574 ◽  
Author(s):  
Marie-Christine Dheur ◽  
Eloïse Devaux ◽  
Thomas W. Ebbesen ◽  
Alexandre Baron ◽  
Jean-Claude Rodier ◽  
...  

Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons.


2008 ◽  
Vol 53 (1) ◽  
pp. 90-99
Author(s):  
L. N. But’ko ◽  
V. D. Buchel’nikov ◽  
I. V. Bychkov ◽  
V. G. Shavrov

Sign in / Sign up

Export Citation Format

Share Document