wave nature
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 72)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Josef Weinbub ◽  
Robert Kosik

Abstract Quantum electronics has significantly evolved over the last decades. Where initially the clear focus was on light-matter interactions, nowadays approaches based on the electron's wave nature have solidified themselves as additional focus areas. This development is largely driven by continuous advances in electron quantum optics, electron based quantum information processing, electronic materials, and nanoelectronic devices and systems. The pace of research in all of these areas is astonishing and is accompanied by substantial theoretical and experimental advancements. What is particularly exciting is the fact that the computational methods, together with broadly available large-scale computing resources, have matured to such a degree so as to be essential enabling technologies themselves. These methods allow to predict, analyze, and design not only individual physical processes but also entire devices and systems, which would otherwise be very challenging or sometimes even out of reach with conventional experimental capabilities. This review is thus a testament to the increasingly towering importance of computational methods for advancing the expanding field of quantum electronics. To that end, computational aspects of a representative selection of recent research in quantum electronics are highlighted where a major focus is on the electron's wave nature. By categorizing the research into concrete technological applications, researchers and engineers will be able to use this review as a source for inspiration regarding problem-specific computational methods.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 502
Author(s):  
Marek Biesiada ◽  
Sreekanth Harikumar

Continuous gravitational waves are analogous to monochromatic light and could therefore be used to detect wave effects such as interference or diffraction. This would be possible with strongly lensed gravitational waves. This article reviews and summarises the theory of gravitational lensing in the context of gravitational waves in two different regimes: geometric optics and wave optics, for two widely used lens models such as the point mass lens and the Singular Isothermal Sphere (SIS). Observable effects due to the wave nature of gravitational waves are discussed. As a consequence of interference, GWs produce beat patterns which might be observable with next generation detectors such as the ground based Einstein Telescope and Cosmic Explorer, or the space-borne LISA and DECIGO. This will provide us with an opportunity to estimate the properties of the lensing system and other cosmological parameters with alternative techniques. Diffractive microlensing could become a valuable method of searching for intermediate mass black holes formed in the centres of globular clusters. We also point to an interesting idea of detecting the Poisson–Arago spot proposed in the literature.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0250543
Author(s):  
Seok Ho Song ◽  
In Seok Song ◽  
Se Jin Oh ◽  
Hyeck-Soo Son ◽  
Min Ho Kang

Purpose To evaluate the image quality of intraocular lenses (IOLs) using field-tracing optical simulation and then compare it with the image quality using conventional ray-tracing simulation. Methods We simulated aspheric IOLs with a decenter, tilt, and no misalignment using an aspheric corneal eye model with a positive spherical aberration. The retinal image, Strehl ratio, and modulation transfer function (MTF) were compared between the ray-tracing and field-tracing optical simulation and confirmed by the results reported in an in vitro experiment using the same eye model. Results The retinal image showed interference fringes from target due to diffraction from the object in a field-tracing simulation. When compared with the experimental results, the field tracing represented the experimental results more precisely than ray tracing after passing over 400 μm of the decentration and 4 degrees of the tilt of the IOLs. The MTF values showed similar results for the case of no IOL misalignment in both the field tracing and ray tracing. In the case of the 200-μm decentration or 8-degree tilt of IOL, the field-traced MTF shows lower values than the ray-traced one. Conclusions The field-tracing optical bench simulation is a reliable method to evaluate IOL performance according to the IOL misalignment. It can provide retinal image quality close to real by taking into account the wave nature of light, interference and diffraction to explain to patients having the IOL misalignment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Na Hyun Jo ◽  
Yun Wu ◽  
Thaís V. Trevisan ◽  
Lin-Lin Wang ◽  
Kyungchan Lee ◽  
...  

AbstractElectrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity. Despite the universality of this phenomenon, a direct observation of the impact of ferromagnetic order on the electronic quasiparticles in a magnetic metal is still lacking. Here we demonstrate that quasiparticles experience a significant enhancement of their lifetime in the ferromagnetic state of the low-density magnetic semimetal EuCd2As2, but this occurs only in selected bands and specific energy ranges. This is a direct consequence of the magnetically induced band splitting and the multi-orbital nature of the material. Our detailed study allows to disentangle different electronic scattering mechanisms due to non-magnetic disorder and magnon exchange. Such high momentum and energy dependence quasiparticle lifetime enhancement can lead to spin selective transport and potential spintronic applications.


Author(s):  
Maria Vetleseter Bøe ◽  
Susanne Viefers

AbstractTeaching and learning of quantum physics at secondary level is an active field of research. One important challenge is finding ways to promote understanding of quantum concepts without the mathematical formalism that is embedded in quantum mechanics but unavailable on the secondary level. We investigated Norwegian secondary students’ (N = 291) descriptions of the wave nature of quantum particles and the uncertainty principle, as expressed during work with learning resources using a sociocultural approach emphasizing history, philosophy, and nature of science aspects. Responses from university students (N = 40) given after a formalism-based course in quantum physics were included for comparison. Themes were identified using thematic analysis and analyzed from the perspective of pedagogical link-making, seeing different themes as representing different levels of explanations of the concepts (phenomenological, qualitative, mathematical). The most dominant theme in descriptions of particle wave nature was that particles exhibit wave behavior in experiments, while referring to the mathematical description of particles by wave functions was a less prominent theme, even among university students. Two uncertainty principle themes were found: uncertainty as inability to measure pairs of variables precisely, and uncertainty as innate blurriness in nature. Largely missing from descriptions of both concepts were meaningful links between different levels of explanations. Based on the results, we discuss ways forward for teaching particle wave nature and uncertainty in secondary education.


2021 ◽  
Author(s):  
Byoung Ham

Abstract Born’s rule is key to understanding quantum mechanics based on the probability amplitude for the measurement process of a physical quantity. Based on a typical particle nature of a photon, the quantum feature of photon bunching on a beam splitter between two output photons can be explained by Born’s rule even without clear definition of the relative phase between two input photons. Unlike conventional understanding on this matter, known as the Hong-Ou-Mandel effect, here, we present a new interpretation based on the wave nature of a photon, where the quantum feature of photon bunching is explained through phase basis superposition of the beam splitter. A Mach-Zehnder interferometer is additionally presented to support the correctness of the presented method. As a result, our limited understanding of the quantum feature is deepened via phase basis superposition regarding the destructive quantum interference. Thus, the so-called ‘mysterious’ quantum feature is now clarified by both the definite phase relationship between paired photons and a new term of the phase basis superposition of an optical system.


2021 ◽  
Author(s):  
Sangbae Kim ◽  
Byoung S. Ham

Abstract One of the most striking quantum phenomena is photon bunching resulting from coincidently impinging two-indistinguishable photons on a beam splitter (BS) from two different input ports. Such a nonclassical feature has also been observed even between two independent light sources through either coherence optics resulting in phase locking or post-selected measurements such as quantum beating-based gating. Recently, BS physics regarding quantum features has been discussed using pure coherence optics based on phase basis superposition of the BS. Here, we experimentally demonstrate coherent photon bunching on a BS, where coherent photons come from the same input port. Although the mean values of both output photons are uniform and equal to each other, the mean value of the coincidence measurements between two output photons results in the nonclassical feature of photon bunching at a 50% rate. For this unprecedented result, we discuss the origin of indistinguishability for this quantum feature using the wave nature of a photon to understand the role of a BS in quantum mechanics.


2021 ◽  
Author(s):  
Physicist Zheng shengming

<p>In the process of exploring the essence of light, Newton initially agreed with the particle interpretation of light while Huygens argued for the wave theory. Hence, these two theories had been disputed in Newton's time. In the beginning people accepted the particle theory, but after Thomas Young's experiment and Augustin Jean Fresnel's experiment, people began to accept the wave theory. Until Einstein proposed the quanta concept, which was later called photon, and, even later, De Broglie proposed the wave nature of matter, subsequently, people began using particle-wave duality to explicate all phenomena in micro world. Thus here appears a paradox: how can one particle exist in two forms? To solve this enigma, I have done some experiments; discover that moving photons create force; this effect reveal the phenomenon of light wave property - the inference fringes is caused by force which moving photons produced. The essence of light is particle but not particle-wave duality.<b></b></p>


2021 ◽  
Author(s):  
Physicist Zheng shengming

<p>In the process of exploring the essence of light, Newton initially agreed with the particle interpretation of light while Huygens argued for the wave theory. Hence, these two theories had been disputed in Newton's time. In the beginning people accepted the particle theory, but after Thomas Young's experiment and Augustin Jean Fresnel's experiment, people began to accept the wave theory. Until Einstein proposed the quanta concept, which was later called photon, and, even later, De Broglie proposed the wave nature of matter, subsequently, people began using particle-wave duality to explicate all phenomena in micro world. Thus here appears a paradox: how can one particle exist in two forms? To solve this enigma, I have done some experiments; discover that moving photons create force; this effect reveal the phenomenon of light wave property - the inference fringes is caused by force which moving photons produced. The essence of light is particle but not particle-wave duality.<b></b></p>


Author(s):  
I. V. Cheremukhina

The use of various physical influences is an economical and highly effective direction for regulating and improving the characteristics of the modified reinforced polymer composite materials developed in this work. The methods of energy effects studied in this work were used at the stage of impregnation of technical threads of various chemical nature with an oligomeric binder and a hardener (when preparing prepregs by the traditional method) or with a binder solution and a curing system (when preparing prepregs by the method of layered application of components) Based on the conducted research, a classification of the applied methods of physical modification according to the principle of the influence of energy fields is proposed. The studied methods of energy effects are divided into orienting and energetically energizing effects. The first group includes treatments with constant magnetic (PMP) or electric fields (PEP), and constant mechanical loads. The second group includes energy effects that have a wave nature (energetically energizing), and vibration, ultrasonic effects, and ultraviolet radiation are attributed to them. Modification methods of the first group contribute to a decrease in the mobility of binder molecules during curing, while the formation of branches of polymer chains occurs during the curing process, which leads to a predominant increase in the destructive stress during static bending. Energetically energizing effects contribute to the relative acceleration of the process of linear growth of polymer chains during curing, which is accompanied by the formation of a more sparsely cross-linked mesh structure, which leads to a predominant increase in impact strength. Of the two competing processes in the curing of epoxy oligomers, this one requires a higher activation energy, which is confirmed by the results of studies. Analyzing the results obtained, it can be concluded that the modification methods used in the work allow not only to obtain polymer composite materials with high strength characteristics, but also to directly adjust the properties of composites depending on the requirements for the products. Orienting modification methods lead to hardening of the resulting polymer composite material with a predominant increase in the destructive stress during static bending from 20 to 47%. When using energetically energizing influences in the technology of producing reinforced reactoplasts, the impact strength increases mainly from 19 to 40%.


Sign in / Sign up

Export Citation Format

Share Document