De Novo Mutations in Human Inherited Disease

Author(s):  
Sofia Oliveira ◽  
David N Cooper ◽  
Luisa Azevedo
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Vikas Pejaver ◽  
Jorge Urresti ◽  
Jose Lugo-Martinez ◽  
Kymberleigh A. Pagel ◽  
Guan Ning Lin ◽  
...  

AbstractIdentifying pathogenic variants and underlying functional alterations is challenging. To this end, we introduce MutPred2, a tool that improves the prioritization of pathogenic amino acid substitutions over existing methods, generates molecular mechanisms potentially causative of disease, and returns interpretable pathogenicity score distributions on individual genomes. Whilst its prioritization performance is state-of-the-art, a distinguishing feature of MutPred2 is the probabilistic modeling of variant impact on specific aspects of protein structure and function that can serve to guide experimental studies of phenotype-altering variants. We demonstrate the utility of MutPred2 in the identification of the structural and functional mutational signatures relevant to Mendelian disorders and the prioritization of de novo mutations associated with complex neurodevelopmental disorders. We then experimentally validate the functional impact of several variants identified in patients with such disorders. We argue that mechanism-driven studies of human inherited disease have the potential to significantly accelerate the discovery of clinically actionable variants.


2020 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Kang Wang ◽  
Weicheng Duan ◽  
Yijie Duan ◽  
Yuxin Yu ◽  
Xiuyi Chen ◽  
...  

Autism spectrum disorder (ASD) cases have increased rapidly in recent decades, which is associated with various genetic abnormalities. To provide a better understanding of the genetic factors in ASD, we assessed the global scientific output of the related studies. A total of 2944 studies published between 1997 and 2018 were included by systematic retrieval from the Web of Science (WoS) database, whose scientific landscapes were drawn and the tendencies and research frontiers were explored through bibliometric methods. The United States has been acting as a leading explorer of the field worldwide in recent years. The rapid development of high-throughput technologies and bioinformatics transferred the research method from the traditional classic method to a big data-based pipeline. As a consequence, the focused research area and tendency were also changed, as the contribution of de novo mutations in ASD has been a research hotspot in the past several years and probably will remain one into the near future, which is consistent with the current opinions of the major etiology of ASD. Therefore, more attention and financial support should be paid to the deciphering of the de novo mutations in ASD. Meanwhile, the effective cooperation of multi-research centers and scientists in different fields should be advocated in the next step of scientific research undertaken.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ozada Khamdiyeva ◽  
Zhanerke Tileules ◽  
Gulminyam Baratzhanova ◽  
Anastassiya Perfilyeva ◽  
Leyla Djansugurova

Abstract Background Epilepsy is one of the most common and heterogeneous neurological diseases. The main clinical signs of the disease are repeated symptomatic or idiopathic epileptic seizures of both convulsive and non-convulsive nature that develop against a background of lost or preserved consciousness. The genetic component plays a large role in the etiology of idiopathic forms of epilepsy. The study of the molecular genetic basis of neurological disorders has led to a rapidly growing number of gene mutations known to be involved in hereditary ion channel dysfunction. The aim of this research was to evaluate the involvement of single-nucleotide variants that modify the function of genes (SCN1A, KCNT1, KCNTС1, and KCNQ2) encoding sodium and potassium ion channel polypeptides in the development of epilepsy. Results De novo mutations in the sodium channel gene SCN1A c.5347G>A (p. Ala1783Thr) were detected in two patients with Dravet syndrome, with a deletion in exon 26 found in one. Three de novo mutations in the potassium channel gene KCNT1 c.2800G>A (p. Ala934Thr), were observed in two patients with temporal lobe epilepsy (TLE) and one patient with residual encephalopathy. Moreover, a control cohort matched to the case cohort did not reveal any SNVs among conditionally healthy individuals, supporting the pathogenic significance of the studied SNVs. Conclusion Our results are supported by literature data showing that the sodium ion channel gene SCN1A c.5347G>A mutation may be involved in the pathogenesis of Dravet syndrome. We also note that the c.2800G>A mutation in the potassium channel gene KCNT1 can cause not only autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) but also other forms of epilepsy. To treat pathogenetic mutations that accelerate the function of sodium and potassium ion channels, we recommend ion channel blockade drug therapy.


Sign in / Sign up

Export Citation Format

Share Document