Polynuclear Ruthenium Complexes

2007 ◽  
pp. 259-263 ◽  
Author(s):  
M. I. Bruce ◽  
C. M. Jensen ◽  
N. L. Jones ◽  
Georg Süss-Fink ◽  
Gerhard Herrmann ◽  
...  
2020 ◽  
Vol 27 (22) ◽  
pp. 3735-3752 ◽  
Author(s):  
Si-Qi Zhang ◽  
Li-Hua Gao ◽  
Hua Zhao ◽  
Ke-Zhi Wang

Ruthenium complexes have stood out by several mononuclear complexes which have entered into clinical trials, such as imidazolium [trans-RuCl4(1H-imidazole)(DMSO-S)] (NAMI-A) and ([Ru(II)(4,4'-dimethyl-2,2'-bipyridine)2-(2(2'-,2'':5'',2'''-terthiophene)-imidazo[4,5-f] [1,10]phenanthroline)] 2+) (TLD-1433), opening a new avenue for developing promising ruthenium-based anticancer drugs alternative to Cisplatin. Polynuclear ruthenium complexes were reported to exhibit synergistic and/or complementary effects: the enhanced DNA structural recognition and DNA binding as well as in vitro anticancer activities. This review overviews some representative polynuclear ruthenium complexes acting as DNA structural probes, DNA binders and in vitro anticancer agents, which were developed during last decades. These complexes are reviewed according to two main categories of homo-polynuclear and hetero-polynuclear complexes, each of which is further clarified into the metal centers linked by rigid and flexible bridging ligands. The perspective, challenges and future efforts for investigations into these exciting complexes are pointed out or suggested.


2001 ◽  
Vol 708 ◽  
Author(s):  
Ravi Mosurkal ◽  
Jin-An He ◽  
Jayant Kumar ◽  
Lian Li ◽  
John Walker ◽  
...  

ABSTRACTRuthenium complexes with tridentate terpyridine type ligands have many structural advantages over the complexes with bipyridine ligands. Polynuclear ruthenium complexes prepared using these terpyridine ligands bridged with phenylene rings are potential candidates for photosensitization in dye-sensitized photovoltaic cells. In this study, we have carried out synthesis, characterization and theoretical modeling of rigid, rod-like homometallic dinuclear ruthenium complexes using terpyridine and bipyridine ligands. The photophysical and photovoltaic properties have been investigated. These supramolecular dyes are found to be efficient photosensitizers in dye-sensitized photovoltaic cells when a liquid electrolyte is employed.


1989 ◽  
Vol 93 (2) ◽  
pp. 736-740 ◽  
Author(s):  
Quinto G. Mulazzani ◽  
Margherita Venturi ◽  
Mila D'Angelantonio ◽  
Carlo A. Bignozzi ◽  
Franco Scandola

2007 ◽  
pp. 216-220 ◽  
Author(s):  
M. I. Bruce ◽  
C. M. Jensen ◽  
N. L. Jones ◽  
Georg Süss-Fink ◽  
Gerhard Herrmann ◽  
...  

2013 ◽  
Vol 17 (22) ◽  
pp. 2592-2608 ◽  
Author(s):  
Fatma Hamad ◽  
Cheng Kai ◽  
Yuan Cai ◽  
Yu Xie ◽  
Yin Lu ◽  
...  

2018 ◽  
Vol 15 (2) ◽  
pp. 179-207
Author(s):  
Ashaparna Mondal ◽  
Priyankar Paira

Background: Currently ruthenium complexes are immerging as effective anticancer agents due to their less toxicity, better antiproliferative and antimetastatic activity, better stability in cellular environment and most importantly variable oxidation and co-ordination states of ruthenium allows binding this molecule with a variety of ligands. So in past few years researchers have shifted their interest towards organoruthenium complexes having good fluorescent profile that may be applicable for cancer theranostics. Nowadays, photodynamic therapy has become more acceptable because of its easy and effective approach towards killing cancer cells. Objective: Objective of this review article is to shed light on synthesis, characterization, stability and fluorescence studies of various ruthenium [Ru(II) and Ru(III)] complexes and different bioactivity studies conducted with the synthesized compounds to test their candidacy as potent chemotherapeutic agents. Methods: Various heterocyclic ligands containing N,O and S as heteroatom mainly were prepared and subjected to complexation with ruthenium-p-cymene moiety. In most cases [Ru(η6-p-cymene)(µ-Cl)Cl]2 was used as ruthenium precursor and the reactions were conducted in various alcohol medium such as methanol, ethanol or propanol. The synthesized complexes were characterized by 1H NMR and 13C NMR spectroscopy, GC-MS, ESI-MS, elemental analysis and single crystal X-ray crystallography methods. Fluorescence study and stability study were conducted accordingly using water, PBS buffer or DMSO. Stable compounds were considered for cell viability studies. To study the efficacy of the compounds in ROS generation as photosensitizers, in few cases, singlet oxygen quantum yields in presence of light were calculated. Suitable compounds were selected for in vitro & in vivo antiproliferative, anti-invasive activity studies. Result: Many newly synthesized compounds were found to have less IC50 compared to a standard drug cysplatin. Those compounds were also stable preferably in physiological conditions. Good fluorescence profile and ROS generation ability were observed for few compounds. Conclusion: Numerous ruthenium complexes were developed which can be used as cancer theranostic agents. Few molecules were synthesized as photosensitizers which were supposed to generate reactive singlet oxygen species in targeted cellular environment in presence of a particular type of light and thereby ceasing cancer cell growth.


2020 ◽  
Vol 208 ◽  
pp. 111080 ◽  
Author(s):  
Jorge Andrés Solís-Ruiz ◽  
Anaïs Barthe ◽  
Gilles Riegel ◽  
Rafael Omar Saavedra-Díaz ◽  
Christian Gaiddon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document