The Effect of the Fiber/Matrix Interface on the Mechanical Properties of Ceramic-Reinforced Zirconia Phosphate-Based Matrix Composites

Author(s):  
Barry Bender
2006 ◽  
Vol 45 ◽  
pp. 1435-1443 ◽  
Author(s):  
Dietmar Koch ◽  
Kamen Tushtev ◽  
Jürgen Horvath ◽  
Ralf Knoche ◽  
Georg Grathwohl

The mechanical properties of ceramic matrix composites (CMC) depend on the individual properties of fibers and matrix, the fiber-matrix interface, the microstructure and the orientation of the fibers. The fiber-matrix interface of ceramics with stiff matrices (e.g. CVI-derived SiC/SiC) must be weak enough to allow crack deflection and debonding in order to achieve excellent strength and strain to failure (weak interface composites WIC). This micromechanical behavior has been intensively investigated during the last 20 years. With the development of CMC with weak matrices (weak matrix composites WMC) as e.g. oxide/oxide composites or polymer derived CMC the mechanical response can not be explained anymore by these models as other microstructural mechanisms occur. If the fibers are oriented in loading direction in a tensile test the WMC behave almost linear elastic up to failure and show a high strength. Under shear mode or if the fibers are oriented off axis a significant quasiplastic stress-strain behavior occurs with high strain to failure and low strength. This complex mechanical behavior of WMC will be explained using a finite element (FE) approach. The micromechanical as well as the FE models will be validated and attributed to the different manufacturing routes.


1990 ◽  
Vol 194 ◽  
Author(s):  
Ronald J. Kerans ◽  
Paul D. Jero ◽  
Triplicane A. Parthasarathy ◽  
Amit Chatterjee

AbstractIt has been evident for some time that the mechanical properties of the fiber/matrix interface play an important role in determining the mechanical behavior of ceramic composites (for reviews, see [1], [2], and [3[). Recently there has been a growing interest in the role of the fiber/matrix interface in intermetallic matrix composites. While ceramic and intermetallic composites are certainly very different materials, understanding the behavior of one will provide insight into the other. Furthermore, the basic issues regarding the determination of interface properties are the same. The accuracy of micromechanics models of any composite system is dependent upon the accuracy of all the constituent and interface properties. It is far preferable to measure actual materials constants rather than test-specific quantities. The tests described here are intended to measure the interfacial shear strength (or mode II toughness) and the interfacial tensile strength. The objective of this work is to briefly outline a few of the approaches which are being evaluated for and applied to ceramic composites, and which may be of interest to investigators working in intermetallic composites.


2014 ◽  
Vol 23 (5-6) ◽  
pp. 551-570 ◽  
Author(s):  
Jun Koyanagi ◽  
Shinji Ogihara ◽  
Hayato Nakatani ◽  
Tomonaga Okabe ◽  
Satoru Yoneyama

2001 ◽  
Author(s):  
Victor Birman ◽  
Larry W. Byrd

Abstract The paper elucidates the methods of estimating damping in ceramic matrix composites (CMC) with matrix cracks. Unidirectional composites with bridging matrix cracks and cross-ply laminates with tunneling cracks in transverse layers and bridging cracks in longitudinal layers are considered. It is shown that bridging matrix cracks may dramatically increase damping in unidirectional CMC due to a dissipation of energy along damaged sections of the fiber-matrix interface (interfacial friction). Such friction is absent in the case of tunneling cracks in transverse layers of cross-ply laminates where the changes in damping due to a degradation of the stiffness remain small. However, damping in cross-ply laminates abruptly increases if bridging cracks appear in the longitudinal layers.


2014 ◽  
Vol 775-776 ◽  
pp. 284-289 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Wellington Pereira Inácio ◽  
Artur Camposo Pereira ◽  
Michel Picanço Oliveira

The tensile properties of DGEBA/TETA epoxy matrix composites reinforced with different amounts of sisal fibers were evaluated. Composites reinforce with up to 30% in volume of long, continuous and aligned sisal fibers were room temperature tested in an Instron machine. The fracture was analyzed by SEM. The results showed significant changes in the mechanical properties with the amount of sisal fibers. These mechanical properties were compared with other bend-tested composites results. The fracture analysis revealed a weak fiber/matrix interface, which could be responsible for the performance of some properties.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Carlos Medina ◽  
Eduardo Fernandez ◽  
Alexis Salas ◽  
Fernando Naya ◽  
Jon Molina-Aldereguía ◽  
...  

The mechanical properties of the matrix and the fiber/matrix interface have a relevant influence over the mechanical properties of a composite. In this work, a glass fiber-reinforced composite is manufactured using a carbon nanotubes (CNTs) doped epoxy matrix. The influence of the CNTs on the material mechanical behavior is evaluated on the resin, on the fiber/matrix interface, and on the composite. On resin, the incorporation of CNTs increased the hardness by 6% and decreased the fracture toughness by 17%. On the fiber/matrix interface, the interfacial shear strength (IFSS) increased by 22% for the nanoengineered composite (nFRC). The influence of the CNTs on the composite behavior was evaluated by through-thickness compression, short beam flexural, and intraply fracture tests. The compressive strength increased by 6% for the nFRC, attributed to the rise of the matrix hardness and the fiber/matrix IFSS. In contrast, the interlaminar shear strength (ILSS) obtained from the short beam tests was reduced by 8% for the nFRC; this is attributed to the detriment of the matrix fracture toughness. The intraply fracture test showed no significant influence of the CNTs on the fracture energy; however, the failure mode changed from brittle to ductile in the presence of the CNTs.


1993 ◽  
Vol 8 (5) ◽  
pp. 1158-1168 ◽  
Author(s):  
Ernest L. Hall ◽  
Ann M. Ritter

The structure and mechanical behavior of the fiber/matrix interface in Ti alloy/SCS-6 SiC metal matrix composites were studied. In these composites the interface region consists of a fiber-coating region and a metal reaction zone between the SiC fiber body and the metal matrix. The fiber coating consists of a number of zones or layers which are comprised of cubic SiC particles in a turbostratic carbon matrix. Some ambiguity remains, concerning the number of distinct layers and the size, shape, and density of the SiC particles. The effect of composite fabrication and heat treatment on the coating structure is relatively small. Studies of the metal reaction zone adjacent to the fiber in Ti alloy/SCS-6 SiC MMC's have shown that a number of discrete zones or layers form. Nearest the fiber, a zone of cubic TiC occurs, with increasing grain size with distance from the fiber. Nearest the metal matrix, a zone of Ti5Si3 forms. In high Al content alloys, an intermediate zone forms that consists of Ti2AlC or Ti3AlC. The fiber/matrix interface plays an important role during transverse tensile loading of these composites. The tensile behavior is controlled by debonding at the interface, followed by deformation of the matrix ligaments. Replica observations show that the debonding initiates and propagates within the coating layers, but is not confined to a single layer interface.


Author(s):  
Ken GOTO ◽  
Miho ISHII ◽  
Hiroshi HATTA ◽  
Hitoshi KOHRI ◽  
Ichiro SHIOTA

Sign in / Sign up

Export Citation Format

Share Document