reaction layer
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 59)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Vol 101 (1) ◽  
pp. 1-14
Author(s):  
PAUL T. VIANCO ◽  
◽  
CHARLES A. WALKER ◽  
DENNIS DE SMET ◽  
ALICE KILGO ◽  
...  

This study examined the interface reaction between Ag-xAl filler metals having x = 0.2, 0.5, or 1.0 wt-% and Kovar™ base materials. The present investigation used the braze joint test sample configuration. The brazing conditions were 965°C (1769°F), 5 min; 995°C (1823°F), 20 min, and a vacuum of 10–7 Torr. Run-out was absent from all test samples. Combining these results with those of the Part 2 study that used high-Al, Ag-xAl filler metals (x = 2.0, 5.0, and 10 wt-%) established these conditions for run-out: Ag-xAl filler metals having x ≥ 2.0 wt-% Al, which result in reaction layer compositions, and (Fe, Ni, Co)y Alz , having z ≥ 26 at.-% Al. The limited occurrences of run-out lobes resulted from the surface tension effect that quickly reduced the driving force for additional run-out events. The interface reactions were controlled by a driving force that was an expressed function of filler metal composition (Ag-xAl) and brazing temperature, as opposed to simply thermally activated rate kinetics. The differences of reaction layer composition and thickness confirmed that the interface reactions differed between the braze joint and sessile drop configurations. Collectively, the findings from the Parts 1–4 investigations concluded that the most-effective means to mitigate run-out is to place a barrier coating on the Kovar base material that will prevent formation of the (Fe, Ni, Co)y Alz reaction layer.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2030
Author(s):  
Xingwen Wei ◽  
Steffen Dudczig ◽  
Dmitry Chebykin ◽  
Christos G. Aneziris ◽  
Olena Volkova

In the previous research works, ZnAl2O4 material was considered as one of the solutions for the decopperization process of molten steels; up to 33% of decopperization efficiency was reported by utilising the ZnAl2O4 filter. In order to verify the decopperization possibility of ZnAl2O4 materials, iron-based alloys with various copper and carbon contents were interacted with ZnAl2O4 substrates in a heating microscope under an argon gas atmosphere at 1600 °C. Fe-Cu alloys were found to react with the ZnAl2O4 substrate during the interaction process, and a reaction layer with a complex composition around the alloy droplet was formed; however, Cu was not detected in the reaction layer. Cu was later found diffused inside of the ZnAl2O4 substrates. Furthermore, the Cu-Zn compounds were detected when the copper content in Fe-Cu alloys was 10 wt% Cu. After interaction experiments, copper was decreased in all cases. Thereby, the copper evaporation and infiltration into the ZnAl2O4 substrate were considered as the reasons for copper loss. Moreover, oxygen dissolved in melt was found to have a great effect on the copper evaporation process.


2021 ◽  
Vol 100 (12) ◽  
pp. 379-395
Author(s):  
PAUL T. VIANCO ◽  
◽  
CHARLES A. WALKER ◽  
DENNIS DE SMET ◽  
ALICE KILGO ◽  
...  

This study examined the interface reaction between sessile drops of the Ag-xAl filler metals having x = 0.2, 0.5, and 1.0 wt-% and KovarTM base material as an avenue to understand the run-out phenomenon observed in active filler metal braze joints. The brazing conditions were combinations of 965°C (1769°F) and 995°C (1823°F) temperatures and brazing times of 5 and 20 min. All brazing was performed in a vacuum of 10–7 Torr. Microanalysis confirmed that a reaction layer developed ahead of the filler metal to support spontaneous wetting and spreading activity. However, run-out was not observed with the sessile drops because the additional surface energy created by the sessile drop free surface constrained wetting and spreading. The value of z in the reaction layer composition, (Fe, Ni, Co)yAlz, increased with x of the Ag-xAl sessile drops for both brazing conditions. Generally, the values of z were lower for the more severe brazing conditions. Also, the reaction layer thickness increased with the Al concentration in the filler metal but did not increase with the severity of brazing conditions. These behaviors indicate that the interface reaction was controlled by the chemical potential rather than the rate kinetics of a thermally activated process. The determining metrics were filler metal composition (Ag-xAl) and brazing temperature. The findings of the present study provided several insights toward developing potential mitigation strategies to prevent run-out.


Author(s):  
peng yang ◽  
He Huang ◽  
Meng Han ◽  
Wenwen Guo ◽  
Chang Tu ◽  
...  

Abstract The Ag-sheathed Ba1-xKxFe2As2 (Ba-122) monofilamentary tapes were prepared by the ex-situ powder-in-tube (PIT) method. The variation of the microstructure and superconducting properties with the thickness of the superconducting core in the cross-section of sintered tapes is studied. At the same time, the reason is studied in comparison with the unsintered tapes. The research results show that the magnetic Jc of the iron-based superconducting tapes increases continuously with distance from the core-sheath interface, which is the complete opposite of the Bi-based superconductor. The magnetic Jc of central layers for final Ba-122 tapes is about 33% higher than the Jc of the whole tape at 4.2 K and 7 T. We have found that the center of the superconducting core shows higher hardness and better texture. In addition, it is also found that there is a reaction layer at the Ag-superconductor interface. These reasons may result in the reduction of the critical current density near the interface in the tapes. Moreover, we also found the presence of a reaction layer in the hot-pressed (HP) high-performance samples. However, no unevenness was found in the unsintered samples. Therefore, the superconductivity of Ba-122 tapes will be better by reducing the reaction layer and eliminating inhomogeneity at the core-sheath interface of the sintered tapes.


Author(s):  
Yu Dong ◽  
Ke Ren ◽  
Qiankun Wang ◽  
Gang Shao ◽  
Yiguang Wang

AbstractEnvironmental barrier coating (EBC) materials that are resistant against molten calcia-magnesia-aluminosilicate (CMAS) corrosion are urgently required. Herein, multicomponent rare-earth (RE) disilicate ((Yb0.2Y0.2Lu0.2Sc0.2Gd0.2)2Si2O7, (5RE)2Si2O7) was investigated with regard to its CMAS interaction behavior at 1400 °C. Compared with the individual RE disilicates, the (5RE)2Si2O7 material exhibited improved resistance against CMAS attack. The dominant process involved in the interaction of (5RE)2Si2O7 with CMAS was reaction-recrystallization. A dense and continuous reaction layer protected the substrate from rapid corrosion at high temperatures. The results demonstrated that multicomponent strategy of RE species in disilicate can provide a new perspective in the development of promising EBC materials with improved corrosion resistance.


Author(s):  
Aina Opsal Bakke ◽  
Arne Nordmark ◽  
Lars Arnberg ◽  
Yanjun Li

AbstractObtaining a strong bond between aluminum and steel is challenging due to poor wettability between aluminum melt and steel and brittle intermetallic phases forming in the interface. In this research, a novel coating method, namely hot dipping of Sn, has been developed to treat the steel insert surfaces. Results show that without preheating the mold or Sn-coated insert, a thin, crack-free, and continuous metallurgical bonding layer was achieved in the A356 aluminum/steel compound castings. Intermetallic structures forming in the interface have been characterized in detail. The Sn-coating layer completely melted and mixed with the liquid aluminum during the casting process. The reaction layer at the aluminum/steel interface is composed of ternary Al–Fe–Si particles and a thin layer of binary Al5Fe2 phase with thickness less than 1 µm. A small fraction of dispersed Sn-rich particles was observed distributing in the reaction layer and adjacent to eutectic Si particles in the A356 alloy. A sessile drop wetting test showed that Sn-coated steel substrates can be well wetted by aluminum melt. The improved wettability between A356 alloy melt and steel was attributed to the penetration and breaking of the aluminum oxide layer at the surface of the aluminum droplets by liquid Sn. Graphic Abstract


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6348
Author(s):  
Jae-Hwan Kim ◽  
Taehyun Hwang ◽  
Masaru Nakamichi

To investigate the growth kinetics of the reaction layer and mechanical strength of joined materials, we joined beryllium and reduced-activation ferritic–martensitic steel (F82H) by plasma sintering under various conditions and characterized the joined region. Scanning electron microscopy revealed that the thickness of the reaction layer increased with an increase in the joining time and temperature. Line analyses and elemental mapping using an electron microprobe analyser showed that the reaction layer consists of Be–Fe intermetallic compounds, including Be12Fe, Be5Fe, and Be2Fe, with small amounts of chromium and tungsten. Owing to the time and temperature dependence of the reaction-layer thickness, the layer growth of Be–Fe intermetallic compounds obeys the parabolic law, and the activation energy for the reaction-layer growth was 116.2 kJ/mol. The bonding strengths of the joined materials varied inversely with the thickness of the reaction layer.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 727
Author(s):  
Bofang Zhou ◽  
Taohua Li ◽  
Hongxia Zhang ◽  
Junliang Hou

The interface behavior of brazing between Zr-Cu filler metal and SiC ceramic was investigated. Based on the brazing experiment, the formation of brazing interface products was analyzed using OM, SEM, XRD and other methods. The stable chemical potential phase diagram was established to analyze the possible diffusion path of interface elements, and then the growth behavior of the interface reaction layer was studied by establishing relevant models. The results show that the interface reaction between the active element Zr and SiC ceramic is the main reason in the brazing process the interface products are mainly ZrC and Zr2Si and the possible diffusion path of elements in the product formation process is explained. The kinetic equation of interfacial reaction layer growth is established, and the diffusion constant (2.1479 μm·s1/2) and activation energy (42.65 kJ·mol−1) are obtained. The growth kinetics equation of interfacial reaction layer thickness with holding time at different brazing temperatures is obtained.


Sign in / Sign up

Export Citation Format

Share Document