Design Modeling of Glass Furnace OXY-Fuel Conversion Using Three-Dimensional Combustion Models

Author(s):  
K. T. Wu ◽  
M. K. Misra
2014 ◽  
Vol 30 (2) ◽  
pp. 321-346
Author(s):  
Kai Hu ◽  
Gao-wei Cao ◽  
Xiao-zhou Yang

Author(s):  
D. Biswas ◽  
K. Kawano ◽  
H. Iwasaki ◽  
M. Ishizuka ◽  
S. Yamanaka

The main aim or the present work is to explore computational fluid dynamics and related turbulence and combustion models for application to the design, understanding and development of gas turbine combustor. Validation studies were conducted using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) scheme to solve the relevant steady, elliptical partial differential equations of the conservation of mass, momentum, energy and chemical species in three-dimensional cylindrical co-ordinate system to simulate the gas turbine combustion chamber configurations. A modified version of k-ε turbulence model was used for characterization of local turbulence in gas turbine combustor. Since, in the present study both diffusion and pre-mixed combustion were considered, in addition to familiar bi-molecular Arhenius relation, influence of turbulence on reaction rates was accounted for based on the eddy break up concept of Spalding and was assumed that the local reaction rate was proportional to the rate of dissipation of turbulent eddies. Firstly, the validity of the present approach with the turbulence and reaction models considered is checked by comparing the computed results with the standard experimental data on recirculation zone, mean axial velocity and temperature profiles, etc. for confined, reacting and non-reacting flows with reasonably well defined boundary conditions. Finally, the results of computation for practical gas turbine combustor using combined diffusion and pre-mixed combustion for different combustion conditions are discussed.


2000 ◽  
Author(s):  
Christopher Q. Jian

Abstract In the fiberglass production process, glass is produced from various batch ingredients in a glass furnace. The molten glass is then delivered, through a delivery system that is often called the front-end system, to the various downstream forming operations. Multiple complex processes take place in the glass furnace, which include the turbulent reacting flow in the combustion space; laminar flow dominated by natural convection in the molten glass; fusion of raw batch materials to form molten glass; radiation and convective heat transfer between the combustion space and the molten glass; bubbling flows in the glass; and Joule heating within the molten glass, etc. The main task of the glass furnace is to convert raw batch materials into glass and thermally and chemically condition the glass before being delivered to the front-end system. One of the major tasks of a front-end system is to insure that the glass is conditioned to the specifications required by the forming operations while maintaining the highest glass quality. Improperly designed and/or operated furnace and front end delivery system can cause a number of problems to the forming operations, ranging from poor glass quality with defects to shortened furnace service life. CFD has become an increasingly important tool for glass manufacturers to guide and optimize such system designs and operations. The current work is part of an effort to leverage CFD resources in the decision-making processes in engineering, operations, and businesses. The furnace modeling was performed using the recently implemented batch melting model jointly developed by Owens Corning and Fluent, Inc., which features three-dimensional simulation of an entire glass furnace including combustion, bubbling, and electrical boosting. The thermal coupling procedure between the combustion space, batch, and the melting tank along with the associated convergence issues are discussed. The modeling results are presented along with comparison with field measurements.


2019 ◽  
Vol 60 (6) ◽  
pp. 1034-1043 ◽  
Author(s):  
Luyao Li ◽  
Huey-Jiuan Lin ◽  
Jianjun Han ◽  
Jian Ruan ◽  
Jun Xie ◽  
...  

2002 ◽  
Vol 3 (5) ◽  
pp. 570-573
Author(s):  
Shen Jin-lin ◽  
Song Chen-lu ◽  
Yan Hui ◽  
Gan Hong-lin

2020 ◽  
pp. 146808742094731
Author(s):  
C Rota ◽  
RE Morgan ◽  
K Mustafa ◽  
R Osborne ◽  
A Matrisciano

In recent years, the exploration of new combustion technologies has accelerated in response to increasingly stringent emissions regulations and fuel economy demands. Virtual engineering tools, that enable the screening of novel hardware and engine calibrations at the early stage of engine development, have become imperative to meet new emission regulations. One-dimensional engine simulations are used at the start of the design of a new engine to define the overall combustion system geometries. Later, more complex three-dimensional computational fluid dynamics calculations are coupled to one-dimensional engine system codes to optimise initial concept geometries and define a system design ready for prototyping. To provide meaningful results, one-dimensional engine system codes often use empirical-based combustion models to calculate the engine burn rate. Moreover, realistic engine burn rates responses, for the entire engine map and for different calibrations, are required to provide three-dimensional computational fluid dynamics codes with correct boundary conditions during the design optimisation phase. Thus, the burn characteristic of new non-traditional combustion solution, for which little experimental data are available, needs to be initially assumed. To improve virtual development and reduce this uncertainty, the industry’s attention shifted towards quasi-dimensional combustion models capable of providing engine burn rate predictions. Within the quasi-dimensional modelling framework, turbulence models, adding extra user-input variables, are required to capture the effect of different combustion chamber geometries on the engine combustion rate. Rigorous validation of zero-dimensional turbulence models for different engine concepts and calibrations is therefore needed to enable quasi-dimensional combustion models to predict the engine burn rate. An alternative methodology, with limited dependency on previous test data, is required to enhance the exploration of novel combustion strategies and geometric architectures. An available process, based on a quasi-dimensional combustion stochastic reactor model, a one-dimensional engine system model and non-combusting three-dimensional computational fluid dynamics calculations, was used for this work. The approach uses limited non-combusting computational fluid dynamics calculations and a previously developed scaling factor response for the stochastic reactor model turbulence input ( τSRM) to quickly predict the engine rate of heat release. In this work, the scaling factor response was assessed against two different engine variants over a variety of engine operating conditions. Moreover, the same response was used to predict the effect of different bore-to-stroke ratios on the engine combustion rate and knock tolerance. Non-combusting computational fluid dynamics and one-dimensional engine system simulations have been carried out to investigate changes in turbulence characteristics due to different engine variants and bore-to-stroke ratios. It was shown that limited number of non-combusting computational fluid dynamics runs is required to characterise the in-cylinder turbulence for each explored engine variant. The scaling factor response was used to manipulate the turbulence input ( τSRM) resulting in good engine burn rates predictions for the explored engine variants and bore-to-stroke ratios. The presented methodology showed augmented predictive capabilities and has potential to move the engine development towards a less hardware dependent virtual approach, offering a practical solution for the exploration of new engine concepts.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Sign in / Sign up

Export Citation Format

Share Document