Image Domain Warping for Stereoscopic 3D Applications

2013 ◽  
pp. 207-230 ◽  
Author(s):  
Oliver Wang ◽  
Manuel Lang ◽  
Nikolce Stefanoski ◽  
Alexander Sorkine-Hornung ◽  
Olga Sorkine-Hornung ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1807
Author(s):  
Sascha Grollmisch ◽  
Estefanía Cano

Including unlabeled data in the training process of neural networks using Semi-Supervised Learning (SSL) has shown impressive results in the image domain, where state-of-the-art results were obtained with only a fraction of the labeled data. The commonality between recent SSL methods is that they strongly rely on the augmentation of unannotated data. This is vastly unexplored for audio data. In this work, SSL using the state-of-the-art FixMatch approach is evaluated on three audio classification tasks, including music, industrial sounds, and acoustic scenes. The performance of FixMatch is compared to Convolutional Neural Networks (CNN) trained from scratch, Transfer Learning, and SSL using the Mean Teacher approach. Additionally, a simple yet effective approach for selecting suitable augmentation methods for FixMatch is introduced. FixMatch with the proposed modifications always outperformed Mean Teacher and the CNNs trained from scratch. For the industrial sounds and music datasets, the CNN baseline performance using the full dataset was reached with less than 5% of the initial training data, demonstrating the potential of recent SSL methods for audio data. Transfer Learning outperformed FixMatch only for the most challenging dataset from acoustic scene classification, showing that there is still room for improvement.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 600
Author(s):  
Cristina Bran ◽  
Jose Angel Fernandez-Roldan ◽  
Rafael P. del Real ◽  
Agustina Asenjo ◽  
Oksana Chubykalo-Fesenko ◽  
...  

Cylindrical magnetic nanowires show great potential for 3D applications such as magnetic recording, shift registers, and logic gates, as well as in sensing architectures or biomedicine. Their cylindrical geometry leads to interesting properties of the local domain structure, leading to multifunctional responses to magnetic fields and electric currents, mechanical stresses, or thermal gradients. This review article is summarizing the work carried out in our group on the fabrication and magnetic characterization of cylindrical magnetic nanowires with modulated geometry and anisotropy. The nanowires are prepared by electrochemical methods allowing the fabrication of magnetic nanowires with precise control over geometry, morphology, and composition. Different routes to control the magnetization configuration and its dynamics through the geometry and magnetocrystalline anisotropy are presented. The diameter modulations change the typical single domain state present in cubic nanowires, providing the possibility to confine or pin circular domains or domain walls in each segment. The control and stabilization of domains and domain walls in cylindrical wires have been achieved in multisegmented structures by alternating magnetic segments of different magnetic properties (producing alternative anisotropy) or with non-magnetic layers. The results point out the relevance of the geometry and magnetocrystalline anisotropy to promote the occurrence of stable magnetochiral structures and provide further information for the design of cylindrical nanowires for multiple applications.


2016 ◽  
Vol 370 ◽  
pp. 68-74 ◽  
Author(s):  
Xin Gao ◽  
Xinzhu Sang ◽  
Xunbo Yu ◽  
Duo Chen ◽  
Zhidong Chen ◽  
...  

2021 ◽  
Author(s):  
Simone Croci ◽  
Cagri Ozcinar ◽  
Emin Zerman ◽  
Roman Dudek ◽  
Sebastian Knorr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document