scholarly journals Analytic Time Evolution, Random Phase Approximation, and Green Functions for Matrix Product States

Author(s):  
Jesse M. Kinder ◽  
Claire C. Ralph ◽  
Garnet Kin-Lic Chan
1995 ◽  
Vol 60 (10) ◽  
pp. 1641-1652 ◽  
Author(s):  
Henri C. Benoît ◽  
Claude Strazielle

It has been shown that in light scattering experiments with polymers replacement of a solvent by a solvent mixture causes problems due to preferential adsorption of one of the solvents. The present paper extends this theory to be applicable to any angle of observation and any concentration by using the random phase approximation theory proposed by de Gennes. The corresponding formulas provide expressions for molecular weight, gyration radius, and the second virial coefficient, which enables measurements of these quantities provided enough information on molecular and thermodynamic quantities is available.


2010 ◽  
Vol 81 (2) ◽  
Author(s):  
Myung-Ki Cheoun ◽  
Eunja Ha ◽  
Su Youn Lee ◽  
K. S. Kim ◽  
W. Y. So ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.


2013 ◽  
Vol 139 (8) ◽  
pp. 081101 ◽  
Author(s):  
Johannes Rekkedal ◽  
Sonia Coriani ◽  
Maria Francesca Iozzi ◽  
Andrew M. Teale ◽  
Trygve Helgaker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document