Close Contact: A Colocation Model for Academic-Industrial Partnerships in Drug Discovery

Author(s):  
Peter A. Covitz ◽  
Terrence D. Ruddy
Keyword(s):  
Author(s):  
Z. Hruban ◽  
J. R. Esterly ◽  
G. Dawson ◽  
A. O. Stein

Samples of a surgical liver biopsy from a patient with lactosyl ceramidosis were fixed in paraformaldehyde and postfixed in osmium tetroxide. Hepatocytes (Figs. 1, 2) contained 0.4 to 2.1 μ inclusions (LCI) limited by a single membrane containing lucid matrix and short segments of curved, lamellated and circular membranous material (Fig. 3). Numerous LCI in large connective tissue cells were up to 11 μ in diameter (Fig. 2). Heterogeneous dense bodies (“lysosomes”) were few and irregularly distributed. Rough cisternae were dilated and contained smooth vesicles and surface invaginations. Close contact with mitochondria was rare. Stacks were small and rare. Vesicular rough reticulum and glycogen rosettes were abundant. Smooth vesicular reticulum was moderately abundant. Mitochondria were round with few cristae and rare matrical granules. Golgi complex was seen rarely (Fig. 1). Microbodies with marginal plates were usual. Multivesicular bodies were very rare. Neutral lipid was rare. Nucleoli were small and perichromatin granules were large. Small bile canaliculi had few microvilli (Fig. 1).


Author(s):  
Kenneth S. Vecchio

Shock-induced reactions (or shock synthesis) have been studied since the 1960’s but are still poorly understood, partly due to the fact that the reaction kinetics are very fast making experimental analysis of the reaction difficult. Shock synthesis is closely related to combustion synthesis, and occurs in the same systems that undergo exothermic gasless combustion reactions. The thermite reaction (Fe2O3 + 2Al -> 2Fe + Al2O3) is prototypical of this class of reactions. The effects of shock-wave passage through porous (powder) materials are complex, because intense and non-uniform plastic deformation is coupled with the shock-wave effects. Thus, the particle interiors experience primarily the effects of shock waves, while the surfaces undergo intense plastic deformation which can often result in interfacial melting. Shock synthesis of compounds from powders is triggered by the extraordinarily high energy deposition rate at the surfaces of the powders, forcing them in close contact, activating them by introducing defects, and heating them close to or even above their melting temperatures.


Sign in / Sign up

Export Citation Format

Share Document