Topology Optimization for Maximizing the Fracture Resistance of Periodic Composites

2020 ◽  
Vol 121 (13) ◽  
pp. 2929-2945 ◽  
Author(s):  
Chi Wu ◽  
Jianguang Fang ◽  
Shiwei Zhou ◽  
Zhongpu Zhang ◽  
Guangyong Sun ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 538
Author(s):  
Heng Zhang ◽  
Xiaohong Ding ◽  
Weiyu Ni ◽  
Yanyu Chen ◽  
Xiaopeng Zhang ◽  
...  

This paper proposes a novel density-based concurrent topology optimization method to support the two-scale design of composite plates for vibration mitigation. To have exceptional damping performance, dynamic compliance of the composite plate is taken as the objective function. The complex stiffness model is used to describe the material damping and accurately consider the variation of structural response due to the change of damping composite material configurations. The mode superposition method is used to calculate the complex frequency response of the composite plates to reduce the heavy computational burden caused by a large number of sample points in the frequency range during each iteration. Both microstructural configurations and macroscopic distribution are optimized in an integrated manner. At the microscale, the damping layer consists of periodic composites with distinct damping and stiffness. The effective properties of the periodic composites are homogenized and then are fed into the complex frequency response analysis at the macroscale. To implement the concurrent topology optimization at two different scales, the design variables are assigned for both macro- and micro-scales. The adjoint sensitivity analysis is presented to compute the derivatives of dynamic compliance of composite plates with respect to the micro and macro design variables. Several numerical examples with different excitation inputs and boundary conditions are presented to confirm the validity of the proposed methodologies. This paper represents a first step towards designing two-scale composite plates with optional dynamic performance under harmonic loading using an inverse design method.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3279
Author(s):  
Daicong Da ◽  
Julien Yvonnet

Topology optimization for maximizing the fracture resistance of particle-matrix composites is investigated. The methodology developed in our previous works, combining evolutionary topology optimization and phase field method to fracture embedding interfacial damage, is applied and extended to periodic composites and multiple objectives. On one hand, we constrain the periodicity of unit cells geometry and conduct their topology optimization for one given load prescribed over the whole structure. On the other hand, we consider a single unit cell whose topology is optimized with respect to the fracture energy criterion when subjected to multiple loads. Size effects are investigated. We show that significant enhancement of the fracture resistance can be achieved for the studied composite structures by the present method. In addition, a first attempt to fracture resistance enhancement of a unit cell associated with a material is investigated for multiple loads, exhibiting a complex optimized microstructure.


Sign in / Sign up

Export Citation Format

Share Document