Random Motions in Markov and Semi‐Markov Random Environments 1

2021 ◽  
Author(s):  
Anatoliy Pogorui ◽  
Anatoliy Swishchuk ◽  
Ramón M. Rodríguez‐Dagnino
2021 ◽  
Author(s):  
Anatoliy Pogorui ◽  
Anatoliy Swishchuk ◽  
Ramón M. Rodríguez‐Dagnino

1967 ◽  
Vol 31 ◽  
pp. 117-119
Author(s):  
F. D. Kahn ◽  
L. Woltjer

The efficiency of the transfer of energy from supernovae into interstellar cloud motions is investigated. A lower limit of about 0·002 is obtained, but values near 0·01 are more likely. Taking all uncertainties in the theory and observations into account, the energy per supernova, in the form of relativistic particles or high-velocity matter, needed to maintain the random motions in the interstellar gas is estimated as 1051·4±1ergs.


2008 ◽  
Vol 48 ◽  
pp. 1041 ◽  
Author(s):  
Daniel Peter Simpson ◽  
Ian W. Turner ◽  
A. N. Pettitt

1969 ◽  
Vol 6 (03) ◽  
pp. 478-492 ◽  
Author(s):  
William E. Wilkinson

Consider a discrete time Markov chain {Zn } whose state space is the non-negative integers and whose transition probability matrix ║Pij ║ possesses the representation where {Pr }, r = 1,2,…, is a finite or denumerably infinite sequence of non-negative real numbers satisfying , and , is a corresponding sequence of probability generating functions. It is assumed that Z 0 = k, a finite positive integer.


Sign in / Sign up

Export Citation Format

Share Document