flexible job shop
Recently Published Documents


TOTAL DOCUMENTS

1128
(FIVE YEARS 371)

H-INDEX

62
(FIVE YEARS 10)

2021 ◽  
pp. 1-14
Author(s):  
Tianhua Jiang ◽  
Huiqi Zhu ◽  
Jiuchun Gu ◽  
Lu Liu ◽  
Haicao Song

This paper presents a discrete animal migration optimization (DAMO) to solve the dual-resource constrained energy-saving flexible job shop scheduling problem (DRCESFJSP), with the aim of minimizing the total energy consumption in the workshop. A job-resource-based two-vector encoding method is designed to represent the scheduling solution, and an energy-saving decoding approach is given based on the left-shift rule. To ensure the quality and diversity of initial scheduling solutions, a heuristic approach is employed for the resource assignment, and some dispatching rules are applied to acquire the operation permutation. In the proposed DAMO, based on the characteristics of the DRCESFJSP problem, the search operators of the basic AMO are discretized to adapt to the problem under study. An animal migration operator is presented based on six problem-based neighborhood structures, which dynamically changes the search scale of each animal according to its solution quality. An individual updating operator based on crossover operation is designed to obtain new individuals through the crossover operation between the current individual and the best individual or a random individual. To evaluate the performance of the proposed algorithm, the Taguchi design of experiment method is first applied to obtain the best combination of parameters. Numerical experiments are carried out based on 32 instances in the existing literature. Computational data and statistical comparisons indicate that both the left-shift decoding rule and population initialization strategy are effective in enhancing the quality of the scheduling solutions. It also demonstrate that the proposed DAMO has advantages against other compared algorithms in terms of the solving accuracy for solving the DRCESFJSP.


2021 ◽  
Vol 12 (1) ◽  
pp. 205
Author(s):  
Changping Liu ◽  
Yuanyuan Yao ◽  
Hongbo Zhu

Green scheduling is not only an effective way to achieve green manufacturing but also an effective way for modern manufacturing enterprises to achieve energy conservation and emission reduction. The double-flexible job shop scheduling problem (DFJSP) considers both machine flexibility and worker flexibility, so it is more suitable for practical production. First, a multi-objective mixed-integer programming model for the DFJSP with the objectives of optimizing the makespan, total worker costs, and total influence of the green production indicators is formulated. Considering the characteristics of the problem, three-layer salp individual encoding and decoding methods are designed for the multi-objective hybrid salp swarm algorithm (MHSSA), which is hybridized with the Lévy flight, the random probability crossover operator, and the mutation operator. In addition, the influence of the parameter setting on the MHSSA in solving the DFJSP is investigated by means of the Taguchi method of design of experiments. The simulation results for benchmark instances show that the MHSSA can effectively solve the proposed problem and is significantly better than the MSSA and the MOPSO algorithm in the diversity, convergence, and dominance of the Pareto frontier.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 344
Author(s):  
Mingliang Wu ◽  
Dongsheng Yang ◽  
Bowen Zhou ◽  
Zhile Yang ◽  
Tianyi Liu ◽  
...  

The flexible job shop scheduling problem has always been the focus of research in the manufacturing field. However, most of the previous studies focused more on efficiency and ignored energy consumption. Energy, especially non-renewable energy, is an essential factor affecting the sustainable development of a country. To this end, this paper designs a flexible job shop scheduling problem model with energy consideration more in line with the production field. Except for the processing stage, the energy consumption of the transport, set up, unload, and idle stage are also included in our model. The weight property of jobs is also considered in our model. The heavier the job, the more energy it consumes during the transport, set up, and unload stage. Meanwhile, this paper invents an adaptive population non-dominated sorting genetic algorithm III (APNSGA-III) that combines the dual control strategy with the non-dominated sorting genetic algorithm III (NSGA-III) to solve our flexible job shop scheduling problem model. Four flexible job shop scheduling problem instances are formulated to examine the performance of our algorithm. The results achieved by the APNSGA-III method are compared with five classic multi-objective optimization algorithms. The results show that our proposed algorithm is efficient and powerful when dealing with the multi-objective flexible job shop scheduling problem model that includes energy consumption.


Sign in / Sign up

Export Citation Format

Share Document