estimation of distribution algorithm
Recently Published Documents


TOTAL DOCUMENTS

446
(FIVE YEARS 71)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

The job-shop environment has been widely studied under different approaches. It is due to its practical characteristic that makes its research interesting. Therefore, the job-shop scheduling problem continues being attracted to develop new evolutionary algorithms. In this paper, we propose a new estimation of distribution algorithm coupled with a radial probability function. The aforementioned radial function comes from the hydrogen element. This approach is proposed in order to build a competitive evolutionary algorithm for the job-shop scheduling problem. The key point is to exploit the radial probability distribution to construct offspring, and to tackle the inconvenient of the EDAs, i.e., lack of diversity of the solutions and poor ability of exploitation. Various instances and numerical experiments are presented to illustrate, and to validate this novel research. The results, obtained from this research, permits to conclude that using radial probability distributions is an emerging field to develop new and efficient EDAs.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3207
Author(s):  
Qiang Yang ◽  
Yong Li ◽  
Xu-Dong Gao ◽  
Yuan-Yuan Ma ◽  
Zhen-Yu Lu ◽  
...  

Optimization problems are ubiquitous in every field, and they are becoming more and more complex, which greatly challenges the effectiveness of existing optimization methods. To solve the increasingly complicated optimization problems with high effectiveness, this paper proposes an adaptive covariance scaling estimation of distribution algorithm (ACSEDA) based on the Gaussian distribution model. Unlike traditional EDAs, which estimate the covariance and the mean vector, based on the same selected promising individuals, ACSEDA calculates the covariance according to an enlarged number of promising individuals (compared with those for the mean vector). To alleviate the sensitivity of the parameters in promising individual selections, this paper further devises an adaptive promising individual selection strategy for the estimation of the mean vector and an adaptive covariance scaling strategy for the covariance estimation. These two adaptive strategies dynamically adjust the associated numbers of promising individuals as the evolution continues. In addition, we further devise a cross-generation individual selection strategy for the parent population, used to estimate the probability distribution by combing the sampled offspring in the last generation and the one in the current generation. With the above mechanisms, ACSEDA is expected to compromise intensification and diversification of the search process to explore and exploit the solution space and thus could achieve promising performance. To verify the effectiveness of ACSEDA, extensive experiments are conducted on 30 widely used benchmark optimization problems with different dimension sizes. Experimental results demonstrate that the proposed ACSEDA presents significant superiority to several state-of-the-art EDA variants, and it preserves good scalability in solving optimization problems.


2021 ◽  
Vol 26 (3) ◽  
pp. 64
Author(s):  
Ricardo Pérez-Rodríguez

The aim of the quay crane scheduling problem (QCSP) is to identify the best sequence of discharging and loading operations for a set of quay cranes. This problem is solved with a new hybrid estimation of distribution algorithm (EDA). The approach is proposed to tackle the drawbacks of the EDAs, i.e., the lack of diversity of solutions and poor ability of exploitation. The hybridization approach, used in this investigation, uses a distance based ranking model and the moth-flame algorithm. The distance based ranking model is in charge of modelling the solution space distribution, through an exponential function, by measuring the distance between solutions; meanwhile, the heuristic moth-flame determines who would be the offspring, with a spiral function that identifies the new locations for the new solutions. Based on the results, the proposed scheme, called QCEDA, works to enhance the performance of those other EDAs that use complex probability models. The dispersion results of the QCEDA scheme are less than the other algorithms used in the comparison section. This means that the solutions found by the QCEDA are more concentrated around the best value than other algorithms, i.e., the average of the solutions of the QCEDA converges better than other approaches to the best found value. Finally, as a conclusion, the hybrid EDAs have a better performance, or equal in effectiveness, than the so called pure EDAs.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chao Deng ◽  
Rong Hu ◽  
Bin Qian ◽  
Huai P. Jin

Aiming at reducing the total energy consumption of three stages processing-transportation-assembly in the assembly manufacturing industry, a three-stage multiobjective integrated scheduling problem with job batch transportation considering the energy consumption (3sMISP_JBTEC) is proposed, and a comprehensive energy consumption model of multistage of 3sMISP_JBTEC with an improved turn off/on strategy in the processing stage and considering speed in the transportation stage is formulated. Then, a hybrid estimation of distribution algorithm with variable neighborhood search (HEDA_VNS) is developed to solve the scheduling problem. In the HEDA_VNS, the reasonable coding/decoding rules and speed scheduling scheme (SSS) are designed. Moreover, two local search strategies are designed to further enhance the performance of HEDA_VNS. Among them, three types of neighborhood search strategies are devised in Local Search I to improve the search efficiency while retaining the structure of the original high-quality solution. A variable neighborhood hybrid operation based on the speed scheduling set is designed in Local Search II to further improve the quality of the solution while balancing the optimization goals. Finally, simulations and comparisons show the efficiency of the proposed HEDA_VNS.


2021 ◽  
Vol 101 ◽  
pp. 104231
Author(s):  
Yoan Martínez-López ◽  
Ansel Y. Rodríguez-González ◽  
Julio Madera ◽  
Miguel Bethencourt Mayedo ◽  
Fernando Lezama

Sign in / Sign up

Export Citation Format

Share Document