Identification and Characterization of RNA-binding Proteins through Three-hybrid Analysis

2008 ◽  
pp. 737-754
Author(s):  
Felicia Scott ◽  
David R. Engelke
2016 ◽  
Author(s):  
Malvika Sharan ◽  
Konrad U. Förstner ◽  
Ana Eulalio ◽  
Jörg Vogel

ABSTRACTRNA-binding proteins (RBPs) have been established as core components of several post-transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs), and their regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical challenges associated with the existing global screening approaches.We introduce APRICOT, a computational pipeline for the sequence-based identification and characterization of proteins using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences using Position Specific Scoring Matrices and Hidden Markov Models of the functional domains and statistically scores them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them by several biological properties. Here we demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets compared to other existing tools for the sequence-based prediction of RBPs by achieving an average sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation are available at https://pypi.python.org/pypi/bio-apricot


Methods ◽  
1998 ◽  
Vol 15 (3) ◽  
pp. 225-232 ◽  
Author(s):  
Bertram L. Jacobs ◽  
Jeffrey O. Langland ◽  
Teresa Brandt

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Joel I. Perez-Perri ◽  
Birgit Rogell ◽  
Thomas Schwarzl ◽  
Frank Stein ◽  
Yang Zhou ◽  
...  

AbstractFollowing the realization that eukaryotic RNA-binding proteomes are substantially larger than anticipated, we must now understand their detailed composition and dynamics. Methods such as RNA interactome capture (RIC) have begun to address this need. However, limitations of RIC have been reported. Here we describe enhanced RNA interactome capture (eRIC), a method based on the use of an LNA-modified capture probe, which yields numerous advantages including greater specificity and increased signal-to-noise ratios compared to existing methods. In Jurkat cells, eRIC reduces the rRNA and DNA contamination by >10-fold compared to RIC and increases the detection of RNA-binding proteins. Due to its low background, eRIC also empowers comparative analyses of changes of RNA-bound proteomes missed by RIC. For example, in cells treated with dimethyloxalylglycine, which inhibits RNA demethylases, eRIC identifies m6A-responsive RNA-binding proteins that escape RIC. eRIC will facilitate the unbiased characterization of RBP dynamics in response to biological and pharmacological cues.


2012 ◽  
Vol 146 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Min Kyung Kim ◽  
Hyun Ju Jung ◽  
Dong Hyun Kim ◽  
Hunseung Kang

2008 ◽  
Vol 26 (4) ◽  
pp. 493-501 ◽  
Author(s):  
Aldo Pende ◽  
Lidia Contini ◽  
Raffaella Sallo ◽  
Mario Passalacqua ◽  
Rasheeda Tanveer ◽  
...  

2016 ◽  
Vol 2016 (10) ◽  
pp. pdb.prot087973 ◽  
Author(s):  
Guang Song ◽  
Johnathan Neiswinger ◽  
Heng Zhu

Sign in / Sign up

Export Citation Format

Share Document