Recent Developments in Heterostructure-Based Catalysts for Water Splitting

2018 ◽  
pp. 191-226
Author(s):  
Savio J. A. Moniz
2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


2017 ◽  
Vol 1 (11) ◽  
pp. 2155-2173 ◽  
Author(s):  
Kaihua Liu ◽  
Haixia Zhong ◽  
Fanlu Meng ◽  
Xinbo Zhang ◽  
Junmin Yan ◽  
...  

The recent developments of metal–nitrogen–carbon catalysts for electrochemical water splitting have been comprehensively summarized.


MRS Bulletin ◽  
2011 ◽  
Vol 36 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Frank E. Osterloh ◽  
Bruce A. Parkinson

Abstract


Author(s):  
Anand P. Tiwari ◽  
Travis G. Novak ◽  
Xiuming Bu ◽  
Johnny C. Ho ◽  
Seokwoo Jeon

Water splitting plays an important role in electrochemical and photoelectrochemical conversion of energy devices. Electrochemical water splitting by the hydrogen evolution reaction (HER) is a straightforward route to produce hydrogen (H2), which requires an efficient electrocatalysts to minimize energy consumption. Recent advances have created a rapid rise in new electrocatalysts, particularly those based on non-precious metals. In this review, we present a comprehensive overview of the recent developments of ternary and quaternary 6d-group transition metal chalcogenides (TMCs) based electrocatalysts for water splitting, especially for HER. Detailed discussion is organized from binary to quaternary TMCs including, surface engineering, heterostructures, chalcogen substitutions, and hierarchically structural design in TMCs. Moreover, emphasis is placed on future research scope and important challenges facing these electrocatalysts for further development in their performance towards water splitting.  


2015 ◽  
Vol 127 (1) ◽  
pp. 33-47 ◽  
Author(s):  
SIVARAMAN RAJAAMBAL ◽  
KUMARSRINIVASAN SIVARANJANI ◽  
CHINNAKONDA S GOPINATH

Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 551 ◽  
Author(s):  
Anand Tiwari ◽  
Travis Novak ◽  
Xiuming Bu ◽  
Johnny Ho ◽  
Seokwoo Jeon

Water splitting plays an important role in the electrochemical and photoelectrochemical conversion of energy devices. Electrochemical water splitting by the hydrogen evolution reaction (HER) is a straightforward route to producing hydrogen (H2), which requires an efficient electrocatalyst to minimize energy consumption. Recent advances have created a rapid rise in new electrocatalysts, particularly those based on non-precious metals. In this review, we present a comprehensive overview of the recent developments of ternary and quaternary 6d-group transition metal chalcogenides (TMCs) based electrocatalysts for water splitting, especially for HER. Detailed discussion is organized from binary to quaternary TMCs including, surface engineering, heterostructures, chalcogen substitutions and hierarchically structural design in TMCs. Moreover, emphasis is placed on future research scope and important challenges facing these electrocatalysts for further development in their performance towards water splitting.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 160
Author(s):  
Prabhakarn Arunachalam ◽  
Keiji Nagai ◽  
Mabrook S. Amer ◽  
Mohamed A. Ghanem ◽  
Rajabathar Jothi Ramalingam ◽  
...  

Visible-light-driven photoelectrochemical (PEC) and photocatalytic water splitting systems featuring heterogeneous semiconductor photocatalysts (oxynitrides, oxysulfides, organophotocatalysts) signify an environmentally friendly and promising approach for the manufacturing of renewable hydrogen fuel. Semiconducting electrode materials as the main constituents in the PEC water splitting system have substantial effects on the device’s solar-to-hydrogen (STH) conversion efficiency. Given the complication of the photocatalysis and photoelectrolysis methods, it is indispensable to include the different electrocatalytic materials for advancing visible-light-driven water splitting, considered a difficult challenge. Heterogeneous semiconductor-based materials with narrower bandgaps (2.5 to 1.9 eV), equivalent to the theoretical STH efficiencies ranging from 9.3% to 20.9%, are recognized as new types of photoabsorbents to engage as photoelectrodes for PEC water oxidation and have fascinated much consideration. Herein, we spotlight mainly on heterogenous semiconductor-based photoanode materials for PEC water splitting. Different heterogeneous photocatalysts based materials are emphasized in different groups, such as oxynitrides, oxysulfides, and organic solids. Lastly, the design approach and future developments regarding heterogeneous photocatalysts oxide electrodes for PEC applications and photocatalytic applications are also discussed.


2020 ◽  
Vol 49 (20) ◽  
pp. 7271-7283
Author(s):  
Lingjing Chen ◽  
Gui Chen ◽  
Chi-Fai Leung ◽  
Claudio Cometto ◽  
Marc Robert ◽  
...  

This tutorial describes recent developments in the use of metal quaterpyridine complexes as electrocatalysts and photocatalysts for water splitting and CO2 reduction.


Sign in / Sign up

Export Citation Format

Share Document