Local shell-side heat transfer coefficients in baffled tubular heat exchangers

AIChE Journal ◽  
1958 ◽  
Vol 4 (3) ◽  
pp. 332-337 ◽  
Author(s):  
T. W. Ambrose ◽  
J. G. Knudsen
2006 ◽  
Vol 129 (9) ◽  
pp. 1277-1285 ◽  
Author(s):  
Qiu-wang Wang ◽  
Gong-nan Xie ◽  
Bo-tao Peng ◽  
Min Zeng

The heat transfer and pressure drop of three types of shell-and-tube heat exchangers, one with conventional segmental baffles and the other two with continuous helical baffles, were experimentally measured with water flowing in the tube side and oil flowing in the shell side. The genetic algorithm has been used to determine the coefficients of correlations. It is shown that under the identical mass flow, a heat exchanger with continuous helical baffles offers higher heat transfer coefficients and pressure drop than that of a heat exchanger with segmental baffles, while the shell structure of the side-in-side-out model offers better performance than that of the middle-in-middle-out model. The predicted heat transfer rates and friction factors by means of the genetic algorithm provide a closer fit to experimental data than those determined by regression analysis. The predicted corrections of heat transfer and flow performance in the shell sides may be used in engineering applications and comprehensive study. It is recommended that the genetic algorithm can be used to handle more complicated problems and to obtain the optimal correlations.


Author(s):  
Wenhai Li ◽  
Ken Alabi ◽  
Foluso Ladeinde

Over the years, empirical correlations have been developed for predicting saturated flow boiling [1–15] and condensation [16–30] heat transfer coefficients inside horizontal/vertical tubes or micro-channels. In the present work, we have examined 30 of these models, and modified many of them for use in compact plate-fin heat exchangers. However, the various correlations, which have been developed for pipes and ducts, have been modified in our work to make them applicable to extended fin surfaces. The various correlations have been used in a low-order, one-dimensional, finite-volume type numerical integration of the flow and heat transfer equations in heat exchangers. The NIST’s REFPROP database [31] is used to account for the large variations in the fluid thermo-physical properties during phase change. The numerical results are compared with Yara’s experimental data [32]. The validity of the various boiling and condensation models for a real plate-fin heat exchanger design is discussed. The results show that some of the modified boiling and condensation correlations can provide acceptable prediction of heat transfer coefficient for two-phase flows in compact plate-fin heat exchangers.


2000 ◽  
Author(s):  
Qiao Lin ◽  
Shuyun Wu ◽  
Yin Yuen ◽  
Yu-Chong Tai ◽  
Chin-Ming Ho

Abstract This paper presents an experimental investigation on MEMS impinging jets as applied to micro heat exchangers. We have fabricated MEMS single and array jet nozzles using DRIE technology, as well as a MEMS quartz chip providing a simulated hot surface for jet impingement. The quartz chip, with an integrated polysilicon thin-film heater and distributed temperature sensors, offers high spatial resolution in temperature measurement due to the low thermal conductivity of quartz. From measured temperature distributions, heat transfer coefficients are computed for single and array micro impinging jets using finite element analysis. The results from this study for the first time provide extensive data on spatial distributions of micro impinging-jet heat transfer coefficients, and demonstrate the viability of MEMS heat exchangers that use micro impinging jets.


Sign in / Sign up

Export Citation Format

Share Document