heat exchanger design
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 78)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Shahin Kharaji

A heat exchanger is a unit operation used to transfer heat between two or more fluids at different temperatures. There are many different types of heat exchangers that are categorized based on different criteria, such as construction, flow arrangement, heat transfer mechanism, etc. Heat exchangers are optimized based on their applications. The most common criteria for optimization of heat exchangers are the minimum initial cost, minimum operation cost, maximum effectiveness, minimum pressure drop, minimum heat transfer area, minimum weight, or material. Using the data modeling, the optimization of a heat exchanger can be transformed into a constrained optimization problem and then solved by modern optimization algorithms. In this chapter, the thermal design and optimization of shell and tube heat exchangers are presented.


2021 ◽  
Author(s):  
I Made Arsana ◽  
Ruri Agung Wahyuono

The wire and tube heat exchanger has been mostly utilized as a condenser unit in various refrigeration systems. As a class of extended surface-based heat exchanger, not only the operating condition but also the geometry of the wire and tube heat exchanger plays a critical role in determining the overall performance of the heat exchanger. Despite the fact that the current designs that include the inline, single-staggered, and woven matrix-based wire and tube heat exchangers already exhibits positive performance, future design and optimization remain challenging from the thermal and fluids engineering point of view. To guide the optimization strategy in the heat exchanger design, this chapter provides an insight into how the geometrical design impacts the performance of various wire and tube heat exchangers, which can be deduced from either the heat exchanger capacity or efficiency.


2021 ◽  
Author(s):  
Abhijit Som

Abstract In practical interest of Reynolds analogy for power and process industries, in a unified system approach an engineering prospective of thermo-fluid physics has been proposed by developing a theory of basic heat exchanger design and analysis. Needless to mention of excellent books on heat exchangers, this paper focuses on the novelty of heat exchanger, which in author’s view depends upon the possibility of energy exchange between two fluid streams at different temperatures. Since operation cannot be random, the principal act of design is to engineer a product such that it operates in specified manner to perform its desired function of de-energizing one stream by virtue of energizing the other. With law of the integral as the guiding principle of physics, it shall be made clear that energy exchange in the form of heat must be accompanied by energy transfer such that heat exchanger must operate due to simultaneous process of cooling and heating of the fluid streams with an intervening medium. To unlock the secret of steady operation a fundamental postulate concerning thermodynamic behavior of the system has been made by invoking zeroth law of thermodynamics. Remarkably, it lends itself a necessary and sufficient condition concerning proportionality between heat-flux and required temperature difference to yield fluids unique thermal response in relation to the heat transfer surface temperature. Consequently, far-reaching physical implications of the constant of proportionality on system design can be clearly exposed of with due consideration to Eulerian descriptions of conservation principles according to Newton’s mechanical theory. Consistently enough, because of thermal non-equilibrium, effectiveness of system design and off design performance warrants a fundamental theorem like one suggested by Reynolds concerning augmentation of thermal diffusion due to fluid motion. Accordingly, flow rates become critical operating parameters for thermal performance and pressure drop requirements. Furthermore, and most importantly, in support of the theorem an order magnitude analysis appears to be in order, to show the dependence of flow resistance and hence, system thermal response on fluid flow behavior in terms of non-dimensional parameters. As a result, it is made clear that development of design correlations for friction factor and non-dimensional heat transfer coefficient in terms of both Reynolds number and Prandtl number is an integral part of heat exchanger design process by gathering experimental data. Finally, generalized mathematical statement of Reynolds analogy has been obtained relating Stanton number with friction factor, which reduces to our familiar expression for Prandtl number of unity.


Sign in / Sign up

Export Citation Format

Share Document