Differential susceptibility of distinct parts of the aquatic plant Nymphoides humboldtiana to herbivory supports the optimal defense theory

2021 ◽  
Author(s):  
Nathália Nocchi ◽  
Renato C. Pereira ◽  
Heitor M. Duarte ◽  
Etiene E.G. Clavico ◽  
Tatiana U.P. Konno ◽  
...  
2021 ◽  
Author(s):  
Pascal Hunziker ◽  
Sophie Konstanze Lambertz ◽  
Konrad Weber ◽  
Christoph Crocoll ◽  
Barbara Ann Halkier ◽  
...  

Numerous plants protect themselves from attackers using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence merely relies on the correlation between plant metabolite distribution and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on actual feeding behavior. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense.


Sign in / Sign up

Export Citation Format

Share Document