Abnormal electrical brain responses to pitch in congenital amusia

2005 ◽  
Vol 58 (3) ◽  
pp. 478-482 ◽  
Author(s):  
Isabelle Peretz ◽  
Elvira Brattico ◽  
Mari Tervaniemi
2009 ◽  
Vol 1169 (1) ◽  
pp. 191-194 ◽  
Author(s):  
Patricia Moreau ◽  
Pierre Jolicœur ◽  
Isabelle Peretz

2021 ◽  
Author(s):  
Jackson E Graves ◽  
Agathe Pralus ◽  
Lesly Fornoni ◽  
Andrew J Oxenham ◽  
Barbara Tillmann ◽  
...  

Congenital amusia is a neurodevelopmental disorder characterized by difficulties in the perception and production of music, including the perception of consonance and dissonance, or the judgment of certain combinations of pitches as more pleasant than others. Two perceptual cues for dissonance are inharmonicity (the lack of a common fundamental frequency between components) and beating (amplitude fluctuations produced by close, interacting frequency components). In the presence of inharmonicities or beats, amusics have previously been reported to be insensitive to inharmonicity, but to exhibit normal sensitivity to beats. In the present study, we measured adaptive discrimination thresholds in amusic participants and found elevated thresholds for both cues. We recorded EEG and measured the mismatch negativity (MMN) in evoked potentials to consonance and dissonance deviants in an oddball paradigm. The amplitude of the MMN response was similar overall for amusics and controls, but while control participants showed a stronger MMN to harmonicity cues than to beating cues, amusic participants showed a stronger MMN to beating cues than to harmonicity cues. These findings suggest that initial encoding of consonance cues may be intact in amusia despite impaired behavioral performance, but that the relative weight of non-spectral cues may be increased for amusic individuals.


2010 ◽  
Vol 24 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Martin M. Monti ◽  
Adrian M. Owen

Recent evidence has suggested that functional neuroimaging may play a crucial role in assessing residual cognition and awareness in brain injury survivors. In particular, brain insults that compromise the patient’s ability to produce motor output may render standard clinical testing ineffective. Indeed, if patients were aware but unable to signal so via motor behavior, they would be impossible to distinguish, at the bedside, from vegetative patients. Considering the alarming rate with which minimally conscious patients are misdiagnosed as vegetative, and the severe medical, legal, and ethical implications of such decisions, novel tools are urgently required to complement current clinical-assessment protocols. Functional neuroimaging may be particularly suited to this aim by providing a window on brain function without requiring patients to produce any motor output. Specifically, the possibility of detecting signs of willful behavior by directly observing brain activity (i.e., “brain behavior”), rather than motoric output, allows this approach to reach beyond what is observable at the bedside with standard clinical assessments. In addition, several neuroimaging studies have already highlighted neuroimaging protocols that can distinguish automatic brain responses from willful brain activity, making it possible to employ willful brain activations as an index of awareness. Certainly, neuroimaging in patient populations faces some theoretical and experimental difficulties, but willful, task-dependent, brain activation may be the only way to discriminate the conscious, but immobile, patient from the unconscious one.


2007 ◽  
Author(s):  
Francis J. McClernon ◽  
Rachel V. Kozink ◽  
Jed E. Rose

2017 ◽  
Vol 2017 ◽  
pp. 104-104
Author(s):  
Hanah Choi ◽  
◽  
DongHyun Kim ◽  
EunJu Lee ◽  
Eunju Ko

2018 ◽  
Vol 2018 ◽  
pp. 693-695
Author(s):  
Eun-Ju Lee ◽  
◽  
Kyeong Cheon Cha ◽  
Minah Suh

2013 ◽  
Vol 20 (2) ◽  
pp. 159-167
Author(s):  
Cun-Mei JIANG ◽  
Yu-Fang YANG

Author(s):  
Anil K. Seth

Consciousness is perhaps the most familiar aspect of our existence, yet we still do not know its biological basis. This chapter outlines a biomimetic approach to consciousness science, identifying three principles linking properties of conscious experience to potential biological mechanisms. First, conscious experiences generate large quantities of information in virtue of being simultaneously integrated and differentiated. Second, the brain continuously generates predictions about the world and self, which account for the specific content of conscious scenes. Third, the conscious self depends on active inference of self-related signals at multiple levels. Research following these principles helps move from establishing correlations between brain responses and consciousness towards explanations which account for phenomenological properties—addressing what can be called the “real problem” of consciousness. The picture that emerges is one in which consciousness, mind, and life, are tightly bound together—with implications for any possible future “conscious machines.”


Sign in / Sign up

Export Citation Format

Share Document