A Dormant Ruthenium Catalyst Bearing a Chelating Carboxylate Ligand: In Situ Activation and Application in Metathesis Reactions

2007 ◽  
Vol 119 (38) ◽  
pp. 7344-7347 ◽  
Author(s):  
Rafał Gawin ◽  
Anna Makal ◽  
Krzysztof Woźniak ◽  
Marc Mauduit ◽  
Karol Grela
2007 ◽  
Vol 46 (38) ◽  
pp. 7206-7209 ◽  
Author(s):  
Rafał Gawin ◽  
Anna Makal ◽  
Krzysztof Woźniak ◽  
Marc Mauduit ◽  
Karol Grela

2018 ◽  
Author(s):  
Roshna Vakkeel ◽  
Aleeza Farrukh ◽  
Aranzazu del Campo

In order to study how dynamic changes of α5β1 integrin engagement affect cellular behaviour, photoactivatable derivatives of α5β1 specific ligands are presented in this article. The presence of the photoremovable protecting group (PRPG) introduced at a relevant position for integrin recognition, temporally inhibits ligand bioactivity. Light exposure at cell-compatible dose efficiently cleaves the PRPG and restores functionality. Selective cell response (attachment, spreading, migration) to the activated ligand on the surface is achieved upon controlled exposure. Spatial and temporal control of the cellular response is demonstrated, including the possibility to in situ activation. Photoactivatable integrin-selective ligands in model microenvironments will allow the study of cellular behavior in response to changes in the activation of individual integrins as consequence of dynamic variations of matrix composition.


2018 ◽  
Author(s):  
Haley Albright ◽  
Paul S. Riehl ◽  
Christopher C. McAtee ◽  
Jolene P. Reid ◽  
Jacob R. Ludwig ◽  
...  

<div>Catalytic carbonyl-olefin metathesis reactions have recently been developed as a powerful tool for carbon-carbon bond</div><div>formation. However, currently available synthetic protocols rely exclusively on aryl ketone substrates while the corresponding aliphatic analogs remain elusive. We herein report the development of Lewis acid-catalyzed carbonyl-olefin ring-closing metathesis reactions for aliphatic ketones. Mechanistic investigations are consistent with a distinct mode of activation relying on the in situ formation of a homobimetallic singly-bridged iron(III)-dimer as the active catalytic species. These “superelectrophiles” function as more powerful Lewis acid catalysts that form upon association of individual iron(III)-monomers. While this mode of Lewis acid activation has previously been postulated to exist, it has not yet been applied in a catalytic setting. The insights presented are expected to enable further advancement in Lewis acid catalysis by building upon the activation principle of “superelectrophiles” and broaden the current scope of catalytic carbonyl-olefin metathesis reactions.</div>


2004 ◽  
Vol 210 (1-2) ◽  
pp. 105-117 ◽  
Author(s):  
L. Alvarez ◽  
J. Espino ◽  
C. Ornelas ◽  
J.L. Rico ◽  
M.T. Cortez ◽  
...  

2006 ◽  
Vol 128 (50) ◽  
pp. 16406-16409 ◽  
Author(s):  
Thomas A. Dineen ◽  
Matthew A. Zajac ◽  
Andrew G. Myers
Keyword(s):  

ChemInform ◽  
2009 ◽  
Vol 40 (44) ◽  
Author(s):  
Remi Martinez ◽  
Marc-Olivier Simon ◽  
Reynald Chevalier ◽  
Cyrielle Pautigny ◽  
Jean-Pierre Genet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document