scholarly journals Minimizing the Entropy Penalty for Ligand Binding: Lessons from the Molecular Recognition of the Histo Blood‐Group Antigens by Human Galectin‐3

2019 ◽  
Vol 131 (22) ◽  
pp. 7346-7350 ◽  
Author(s):  
Ana Gimeno ◽  
Sandra Delgado ◽  
Pablo Valverde ◽  
Sara Bertuzzi ◽  
Manuel Alvaro Berbís ◽  
...  
2019 ◽  
Vol 58 (22) ◽  
pp. 7268-7272 ◽  
Author(s):  
Ana Gimeno ◽  
Sandra Delgado ◽  
Pablo Valverde ◽  
Sara Bertuzzi ◽  
Manuel Alvaro Berbís ◽  
...  

2018 ◽  
Vol 92 (11) ◽  
Author(s):  
Xiaoman Sun ◽  
Lihong Wang ◽  
Jianxun Qi ◽  
Dandi Li ◽  
Mengxuan Wang ◽  
...  

ABSTRACTGroup/species C rotaviruses (RVCs) have been identified as important pathogens of acute gastroenteritis (AGE) in children, family-based outbreaks, as well as animal infections. However, little is known regarding their host-specific interaction, infection, and pathogenesis. In this study, we performed serial studies to characterize the function and structural features of a human G4P[2] RVC VP8* that is responsible for the host receptor interaction. Glycan microarrays demonstrated that the human RVC VP8* recognizes type A histo-blood group antigens (HBGAs), which was confirmed by synthetic glycan-/saliva-based binding assays and hemagglutination of red blood cells, establishing a paradigm of RVC VP8*-glycan interactions. Furthermore, the high-resolution crystal structure of the human RVC VP8* was solved, showing a typical galectin-like structure consisting of two β-sheets but with significant differences from cogent proteins of group A rotaviruses (RVAs). The VP8* in complex with a type A trisaccharide displays a novel ligand binding site that consists of a particular set of amino acid residues of the C-D, G-H, and K-L loops. RVC VP8* interacts with type A HBGAs through a unique mechanism compared with that used by RVAs. Our findings shed light on the host-virus interaction and the coevolution of RVCs and will facilitate the development of specific antivirals and vaccines.IMPORTANCEGroup/species C rotaviruses (RVCs), members ofReoviridaefamily, infect both humans and animals, but our knowledge about the host factors that control host susceptibility and specificity is rudimentary. In this work, we characterized the glycan binding specificity and structural basis of a human RVC that recognizes type A HBGAs. We found that human RVC VP8*, the rotavirus host ligand binding domain that shares only ∼15% homology with the VP8* domains of RVAs, recognizes type A HBGA at an as-yet-unknown glycan binding site through a mechanism distinct from that used by RVAs. Our new advancements provide insights into RVC-cell attachment, the critical step of virus infection, which will in turn help the development of control and prevention strategies against RVs.


2005 ◽  
Vol 79 (11) ◽  
pp. 6714-6722 ◽  
Author(s):  
Pengwei Huang ◽  
Tibor Farkas ◽  
Weiming Zhong ◽  
Ming Tan ◽  
Scott Thornton ◽  
...  

ABSTRACT Noroviruses, an important cause of acute gastroenteritis, have been found to recognize human histo-blood group antigens (HBGAs) as receptors. Four strain-specific binding patterns to HBGAs have been described in our previous report. In this study, we have extended the binding patterns to seven based on 14 noroviruses examined. The oligosaccharide-based assays revealed additional epitopes that were not detected by the saliva-based assays. The seven patterns have been classified into two groups according to their interactions with three major epitopes (A/B, H, and Lewis) of human HBGAs: the A/B-binding group and the Lewis-binding group. Strains in the A/B binding group recognize the A and/or B and H antigens, but not the Lewis antigens, while strains in the Lewis-binding group react only to the Lewis and/or H antigens. This classification also resulted in a model of the norovirus/HBGA interaction. Phylogenetic analyses showed that strains with identical or closely related binding patterns tend to be clustered, but strains in both binding group can be found in both genogroups I and II. Our results suggest that noroviruses have a wide spectrum of host range and that human HBGAs play an important role in norovirus evolution. The high polymorphism of the human HBGA system, the involvement of multiple epitopes, and the typical protein/carbohydrate interaction between norovirus VLPs and HBGAs provide an explanation for the virus-ligand binding diversities.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2234-2234 ◽  
Author(s):  
Orla Rawley ◽  
Jamie O'Sullivan ◽  
Gudmundur Bergsson ◽  
Alain Chan ◽  
Rachel Therese McGrath ◽  
...  

Abstract Abstract 2234 Von Willebrand Factor (VWF) is extensively glycosylated with both N- and O-linked carbohydrates. Moreover, these complex glycan structures influence VWF functional properties, including susceptibility to ADAMTS13 proteolysis, and plasma clearance. The molecular mechanisms through which VWF glycosylation (including ABO blood group antigens) act to influence VWF physiology remains unexplained. However, recent data suggest that VWF circulates in normal plasma bound to various carbohydrate-binding proteins, including specific members of the galectin family. In addition, galectin-3 binding has been reported to influence VWF cleavage by ADAMTS13. In this context, we sought to elucidate the role of specific VWF glycan determinants in modulating galectin interaction. VWF was purified from human plasma (pdVWF) by cryoprecipitation and gel filtration. VWF glycosylation was then modified using exoglycosidases and quantified by specific lectin ELISAs. Blood group specific VWF was also purified from pooled group AB, O, or Bombay plasmas. Galectins-1 and -3 were transiently expressed in competent E-coli cells with an N-terminal histidine tag, and purified by nickel chromatography. Finally, binding interactions were characterized via modified immunosorbant assay. In keeping with the previous report of Lenting et al, human pdVWF bound to both galectin-1 and galectin-3 in a dose-dependent manner. Enzymatic desialylation of pdVWF with α2-3,6,8,9 neuraminidase (Neu-VWF) markedly enhanced binding to galectin-1 (231±6%, p<0.0001). Similarly, removal of terminal sialic acid also increased binding to galectin-3, albeit to a lesser extent (136±6%, p<0.05). To further define the role of VWF glycans in regulating galectin binding, pdVWF was exposed to sequential neuraminidase and galactosidase digestions to remove terminal sialic acid and sub-terminal galactose residues (NeuGal-VWF). In contrast to the enhanced binding of Neu-VWF, binding of NeuGal-VWF to both galectin -1 and -3 was significantly reduced (51±5% and 52±6% compared to pdVWF; p<0.005). Cumulatively these findings suggest that loss of capping sialic acid and exposure of sub-terminal galactose critically regulates VWF-galectin binding. Treatment with PNGase F to completely remove N-linked carbohydrate structures (PNG-VWF) markedly decreased binding to galectin -1 and -3 (13±1% and 57±2%, p<0.001). Moreover, combined PNGase F and O-glycosidase digestions further attenuated galectin-3 binding (21±1%, p<0.001), suggesting that both the N- and O-linked glycans are involved in mediating the VWF-galectin interaction. ABO(H) blood group antigens are expressed on both the N-linked and O-linked glycans of human VWF. Moreover, ABO(H) determinants influence VWF susceptibility to ADAMTS13 proteolysis and plasma VWF half-life, through unknown mechanisms. Purified VWF from normal group AB individuals bound to both galectin-1 and galectin-3 significantly better than group O VWF (146±8% and 483±19%; p<0.01). Conversely, no significant difference in binding was observed between Group O and Bombay VWF. Consequently, although terminal A (GalNAc) and B (Gal) sugar moieties promote galectin binding, expression of terminal α1–2 fucose residues is not important. The glycosylation profile of platelet-VWF differs from that of pdVWF. In particular, platelet-VWF expresses reduced levels of both capping sialic acid and sub-terminal galactose residues (∼50%), and lacks AB blood group antigens. To characterize the effects of this differential sugar expression on galectin binding, platelet-derived VWF was isolated and purified (platelet freeze-thawing followed by immuno-affinity chromatography with monoclonal CLB-Rag20). In keeping with the reduction in Gal and AB blood group antigen expression, platelet VWF bound less well to galectin-1 and galectin-3 (72±6% and 67±7% versus pdVWF; p<0.05). These novel data demonstrate that both the N- and O-linked oligosaccharide structures of VWF are involved in mediating galectin binding. In particular, expression of terminal AB blood group antigens, and expression of sub-terminal galactose moieties following loss of capping sialic acid, both markedly enhance galectin binding affinity. Further studies will be required to define how galectin binding is involved in mediating the functional consequences of variation in VWF glycans. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 34 (5) ◽  
pp. 679-689 ◽  
Author(s):  
Brigitte Fiege ◽  
Mila Leuthold ◽  
Francisco Parra ◽  
Kevin P. Dalton ◽  
Peter J. Meloncelli ◽  
...  

mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Jacob F. Kocher ◽  
Lisa C. Lindesmith ◽  
Kari Debbink ◽  
Anne Beall ◽  
Michael L. Mallory ◽  
...  

ABSTRACTEmerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses.Caliciviridaerepresent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, andin vitroassays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified inPerimyotis subflavusnear Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novelCaliciviridaegenus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens.IMPORTANCECaliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second norovirus-like bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations.


1979 ◽  
Vol 254 (6) ◽  
pp. 2112-2119 ◽  
Author(s):  
J.E. Sadler ◽  
J.C. Paulson ◽  
R.L. Hill

1993 ◽  
Vol 22 (1) ◽  
pp. 7-12
Author(s):  
Shinichi Kudo ◽  
Masaaki Onda ◽  
Ann Rearden ◽  
Minoru Fukuda

Sign in / Sign up

Export Citation Format

Share Document