scholarly journals Norovirus and Histo-Blood Group Antigens: Demonstration of a Wide Spectrum of Strain Specificities and Classification of Two Major Binding Groups among Multiple Binding Patterns

2005 ◽  
Vol 79 (11) ◽  
pp. 6714-6722 ◽  
Author(s):  
Pengwei Huang ◽  
Tibor Farkas ◽  
Weiming Zhong ◽  
Ming Tan ◽  
Scott Thornton ◽  
...  

ABSTRACT Noroviruses, an important cause of acute gastroenteritis, have been found to recognize human histo-blood group antigens (HBGAs) as receptors. Four strain-specific binding patterns to HBGAs have been described in our previous report. In this study, we have extended the binding patterns to seven based on 14 noroviruses examined. The oligosaccharide-based assays revealed additional epitopes that were not detected by the saliva-based assays. The seven patterns have been classified into two groups according to their interactions with three major epitopes (A/B, H, and Lewis) of human HBGAs: the A/B-binding group and the Lewis-binding group. Strains in the A/B binding group recognize the A and/or B and H antigens, but not the Lewis antigens, while strains in the Lewis-binding group react only to the Lewis and/or H antigens. This classification also resulted in a model of the norovirus/HBGA interaction. Phylogenetic analyses showed that strains with identical or closely related binding patterns tend to be clustered, but strains in both binding group can be found in both genogroups I and II. Our results suggest that noroviruses have a wide spectrum of host range and that human HBGAs play an important role in norovirus evolution. The high polymorphism of the human HBGA system, the involvement of multiple epitopes, and the typical protein/carbohydrate interaction between norovirus VLPs and HBGAs provide an explanation for the virus-ligand binding diversities.

2018 ◽  
Vol 92 (9) ◽  
Author(s):  
Eun-Hyo Cho ◽  
Mahmoud Soliman ◽  
Mia Madel Alfajaro ◽  
Ji-Yun Kim ◽  
Ja-Young Seo ◽  
...  

ABSTRACTSome viruses within theCaliciviridaefamily initiate their replication cycle by attachment to cell surface carbohydrate moieties, histo-blood group antigens (HBGAs), and/or terminal sialic acids (SAs). Although bovine nebovirus (BNeV), one of the enteric caliciviruses, is an important causative agent of acute gastroenteritis in cattle, its attachment factors and possibly other cellular receptors remain unknown. Using a comprehensive series of protein-ligand biochemical assays, we sought to determine whether BNeV recognizes cell surface HBGAs and/or SAs as attachment factors. It was found that BNeV virus-like particles (VLPs) bound to A type/H type 2/LeyHBGAs expressed in the bovine digestive tract and are related to HBGAs expressed in humans and other host species, suggesting a wide spectrum of HBGA recognition by BNeV. BNeV VLPs also bound to a large variety of different bovine and human saliva samples of all ABH and Lewis types, supporting previously obtained results and suggesting a zoonotic potential of BNeV transmission. Removal of α1,2-linked fucose and α1,3/4-linked fucose epitopes of target HBGAs by confirmation-specific enzymes reduced the binding of BNeV VLPs to synthetic HBGAs, bovine and human saliva, cultured cell lines, and bovine small intestine mucosa, further supporting a wide HBGA binding spectrum of BNeV through recognition of α1,2-linked fucose and α1,3/4-linked fucose epitopes of targeted HBGAs. However, removal of terminal α2,3- and α2,6-linked SAs by their specific enzyme had no inhibitory effects on binding of BNeV VLPs, indicating that BNeV does not use terminal SAs as attachment factors. Further details of the binding specificity of BNeV remain to be explored.IMPORTANCEEnteric caliciviruses such as noroviruses, sapoviruses, and recoviruses are the most important etiological agents of severe acute gastroenteritis in humans and many other mammalian host species. They initiate infection by attachment to cell surface carbohydrate moieties, HBGAs, and/or terminal SAs. However, the attachment factor(s) for BNeV, a recently classified enteric calicivirus genus/type species, remains unexplored. Here, we demonstrate that BNeV VLPs have a wide spectrum of binding to synthetic HBGAs, bovine and human saliva samples, and bovine duodenal sections. We further discovered that α1,2-linked fucose and α1,3/4-linked fucose epitopes are essential for binding of BNeV VLPs. However, BNeV VLPs do not bind to terminal SAs on cell carbohydrates. Continued investigation regarding the proteinaceous receptor(s) will be necessary for better understanding of the tropism, pathogenesis, and host range of this important viral genus.


2018 ◽  
Vol 92 (11) ◽  
Author(s):  
Xiaoman Sun ◽  
Lihong Wang ◽  
Jianxun Qi ◽  
Dandi Li ◽  
Mengxuan Wang ◽  
...  

ABSTRACTGroup/species C rotaviruses (RVCs) have been identified as important pathogens of acute gastroenteritis (AGE) in children, family-based outbreaks, as well as animal infections. However, little is known regarding their host-specific interaction, infection, and pathogenesis. In this study, we performed serial studies to characterize the function and structural features of a human G4P[2] RVC VP8* that is responsible for the host receptor interaction. Glycan microarrays demonstrated that the human RVC VP8* recognizes type A histo-blood group antigens (HBGAs), which was confirmed by synthetic glycan-/saliva-based binding assays and hemagglutination of red blood cells, establishing a paradigm of RVC VP8*-glycan interactions. Furthermore, the high-resolution crystal structure of the human RVC VP8* was solved, showing a typical galectin-like structure consisting of two β-sheets but with significant differences from cogent proteins of group A rotaviruses (RVAs). The VP8* in complex with a type A trisaccharide displays a novel ligand binding site that consists of a particular set of amino acid residues of the C-D, G-H, and K-L loops. RVC VP8* interacts with type A HBGAs through a unique mechanism compared with that used by RVAs. Our findings shed light on the host-virus interaction and the coevolution of RVCs and will facilitate the development of specific antivirals and vaccines.IMPORTANCEGroup/species C rotaviruses (RVCs), members ofReoviridaefamily, infect both humans and animals, but our knowledge about the host factors that control host susceptibility and specificity is rudimentary. In this work, we characterized the glycan binding specificity and structural basis of a human RVC that recognizes type A HBGAs. We found that human RVC VP8*, the rotavirus host ligand binding domain that shares only ∼15% homology with the VP8* domains of RVAs, recognizes type A HBGA at an as-yet-unknown glycan binding site through a mechanism distinct from that used by RVAs. Our new advancements provide insights into RVC-cell attachment, the critical step of virus infection, which will in turn help the development of control and prevention strategies against RVs.


2019 ◽  
Vol 131 (22) ◽  
pp. 7346-7350 ◽  
Author(s):  
Ana Gimeno ◽  
Sandra Delgado ◽  
Pablo Valverde ◽  
Sara Bertuzzi ◽  
Manuel Alvaro Berbís ◽  
...  

Author(s):  
Mohammad Farahmand ◽  
Somayeh Jalilvand ◽  
Arash Arashkia ◽  
Shohreh Shahmahmoodi ◽  
Atefeh Afchangi ◽  
...  

Author(s):  
Ming Tan ◽  
Xi Jiang

Noroviruses (NoVs) and rotaviruses (RVs), the two most important causes of viral acute gastroenteritis, are found to recognise histo-blood group antigens (HBGAs) as receptors or ligands for attachment. Human HBGAs are highly polymorphic containing ABO, secretor and Lewis antigens. In addition, both NoVs and RVs are highly diverse in how they recognise these HBGAs. Structural analysis of the HBGA-binding interfaces of NoVs revealed a conserved central binding pocket (CBP) interacting with a common major binding saccharide (MaBS) of HBGAs and a variable surrounding region interacting with additional minor binding saccharides. The conserved CBP indicates a strong selection of NoVs by the host HBGAs, whereas the variable surrounding region explains the diverse recognition patterns of different HBGAs by NoVs and RVs as functional adaptations of the viruses to human HBGAs. Diverse recognition of HBGAs has also been found in bacterial pathogenHelicobacter pylori. Thus, exploratory research into whether such diverse recognitions also occur for other viral and bacterial pathogens that recognise HBGAs is warranted.


2001 ◽  
Vol 382 (3) ◽  
pp. 355-361 ◽  
Author(s):  
Elke Van Craenenbroeck ◽  
Jo Vercammen ◽  
Gunther Matthys ◽  
Jan Beirlant ◽  
Christophe Marot ◽  
...  

Abstract A statistical method for the analysis of fluorescence fluctuation amplitudes including bright spikes is presented. This situation arises e. g. when fluorescent ligands interact with receptors carrying multiple binding sites. The technique gives information on the amount of bound ligand in solution, making it a complementary technique to fluorescence correlation spectroscopy analysis, which cannot be applied in this situation. Two simple statistical tests are proposed that can discriminate between fluorescence intensities originating from free ligands or complexes. The performance of the two tests is evaluated and compared on mixtures of a fluorophore and fluorophore coated beads that mimic the behaviour of multiliganded complexes. An application to ligand binding to the serotonin receptor, expressed on Escherichia coli cells, is also provided. Specific binding of a fluorophore to this receptor, as well as competition with several ligands, is assessed.


Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 833
Author(s):  
Malak A. Esseili ◽  
Xiang Gao ◽  
Patricia Boley ◽  
Yixuan Hou ◽  
Linda J. Saif ◽  
...  

Lettuce is often implicated in human norovirus (HuNoV) foodborne outbreaks. We identified H-like histo-blood group antigens (HBGAs) on lettuce leaves as specific binding moieties for virus-like particles (VLPs) of HuNoV GII.4/HS194/2009 strain. The objective of this study was to determine whether HuNoV-lettuce binding is mediated through the virus HBGA binding sites (HBS). Toward this objective, VLPs of historical HuNoV GII.4 strains (1987, 1997, 2002, 2004 and 2006) with known natural mutations in their HBS, two newly generated VLP mutants of GII.4/HS194/2009 (D374A and G443A) and a VLP mutant (W375A) of GI.1/Norwalk/1968 along with its wild type VLPs, which displays distinct HBS, were investigated for their binding to lettuce. ELISA revealed that historical GII.4 strains binding to lettuce was dependent on their HBGAs profiles. The VLP mutants D374A and G443A lost binding to HBGAs and displayed no to minimal binding to lettuce, respectively. The VLPs of GI.1/Norwalk/1968 strain bound to lettuce through an H-like HBGA and the binding was inhibited by fucosidase digestion. Mutant W375A which was previously shown not to bind to HBGAs, displayed significantly reduced binding to lettuce. We conclude that the binding of HuNoV GII.4 and GI.1 strains to lettuce is mediated through the virus HBS.


2016 ◽  
Vol 90 (21) ◽  
pp. 9758-9765 ◽  
Author(s):  
Xiaoman Sun ◽  
Dandi Li ◽  
Ruchao Peng ◽  
Nijun Guo ◽  
Miao Jin ◽  
...  

ABSTRACT Rotaviruses (RVs) of species A (RVA) are a major causative agent of acute gastroenteritis. Recently, histo-blood group antigens (HBGAs) have been reported to interact with human RVA VP8* proteins. Human P[19] is a rare P genotype of porcine origin that infects humans sporadically. The functional and structural characteristics of P[19] VP8* interaction with HBGAs are unknown. In this study, we expressed and purified the VP8* proteins of human and porcine P[19] RVs. In oligosaccharide and saliva binding assays, P[19] VP8* proteins showed obvious binding to A-, B-, and O-type saliva samples irrespective of the secretor status, implying broad binding patterns. However, they did not display specific binding to any of the oligosaccharides tested. In addition, we solved the structure of human P[19] VP8* at 2.4 Å, which revealed a typical galectin-like fold. The structural alignment demonstrated that P[19] VP8* was most similar to that of P[8], which was consistent with the phylogenetic analysis. Structure superimposition revealed the basis for the lack of binding to the oligosaccharides. Our study indicates that P[19] RVs may bind to other oligosaccharides or ligands and may have the potential to spread widely among humans. Thus, it is necessary to place the prevalence and evolution of P[19] RVs under surveillance. IMPORTANCE Human P[19] is a rare P genotype of porcine origin. Based on phylogenetic analysis of VP8* sequences, P[19] was classified in the P[II] genogroup, together with P[4], P[6], and P[8], which have been reported to interact with HBGAs in a genotype-dependent manner. In this study, we explored the functional and structural characteristics of P[19] VP8* interaction with HBGAs. P[19] VP8* showed binding to A-, B-, and O-type saliva samples, as well as saliva of nonsecretors. This implies that P[19] has the potential to spread among humans with a broad binding range. Careful attention should be paid to the evolution and prevalence of P[19] RVs. Furthermore, we solved the structure of P[19] VP8*. Structure superimposition indicated that P[19] may bind to other oligosaccharides or ligands using potential binding sites, suggesting that further investigation of the specific cell attachment factors is warranted.


Sign in / Sign up

Export Citation Format

Share Document