Glycoconjugate Journal
Latest Publications


TOTAL DOCUMENTS

2482
(FIVE YEARS 174)

H-INDEX

71
(FIVE YEARS 6)

Published By Springer-Verlag

1573-4986, 0282-0080

Author(s):  
Liqiong Jiang ◽  
Jianying Zhou ◽  
Li Zhang ◽  
Yufeng Du ◽  
Mingming Jiang ◽  
...  

AbstractInflammation is considered an important mechanism in the development of diabetes mellitus (DM) and persists for a long time before the occurrence of diabetic nephropathy (DN). Many studies have demonstrated that a decrease in the endothelial glycocalyx (EG) is negatively correlated with proteinuria. To elucidate whether EG damage induced by inflammasomes in DM patients leads to the occurrence of microalbuminuria (MA) and accelerates the progression of DN, this study screened 300 diagnosed DM patients. Finally, 70 type 2 diabetes patients were invited to participate in this study and were divided into two groups: the T2DM group (patients with normal MA and without diabetic retinopathy, n = 35) and the T2DN group (patients with increased MA and diabetic retinopathy, n = 35). Circulating heparin sulphate (HS, EG biomarkers) and interleukin-1 beta (IL-1β, inflammasome biomarkers) of the patients were measured by ELISA. Laboratory data were measured using routine laboratory methods. Patients in the T2DN group had increased serum HS, increased IL-1β, increased CRP, decreased haemoglobin, and increased neutrophils compared to patients in the T2DM group (all P < 0.05). Increased HS and decreased haemoglobin were independently associated with T2DN patients. ROC curves showed that the AUC of HS for the prediction of T2DN was 0.67 (P < 0.05). The combination of HS and haemoglobin yielded a significant increasement in the AUC (0.75, P < 0.001) with optimal sensitivity (71.2%) and specificity (79%). Furthermore, serum IL-1β was positively correlated with HS and was an independent associated factor of HS in the T2DN group. The relationship between HS and IL-1β was not significant in the T2DM group. Our findings surgessed the inflammasome may be associated with and promote damage to the EG during the disease course of DN that manifests as increased MA.


Author(s):  
Erino Araki ◽  
Masaya Hane ◽  
Rina Hatanaka ◽  
Ryota Kimura ◽  
Kana Tsuda ◽  
...  
Keyword(s):  

Author(s):  
Robert Ledeen ◽  
Suman Chowdhury ◽  
Zi-Hua Lu ◽  
Monami Chakraborty ◽  
Gusheng Wu

AbstractFollowing our initial reports on subnormal levels of GM1 in the substantia nigra and occipital cortex of Parkinson’s disease (PD) patients, we have examined additional tissues from such patients and found these are also deficient in the ganglioside. These include innervated tissues intimately involved in PD pathology such as colon, heart and others, somewhat less intimately involved, such as skin and fibroblasts. Finally, we have analyzed GM1 in peripheral blood mononuclear cells, a type of tissue apparently with no direct innervation, and found those too to be deficient in GM1. Those patients were all afflicted with the sporadic form of PD (sPD), and we therefore conclude that systemic deficiency of GM1 is a characteristic of this major type of PD. Age is one factor in GM1 decline but is not sufficient; additional GM1 suppressive factors are involved in producing sPD. We discuss these and why GM1 replacement offers promise as a disease-altering therapy.


Author(s):  
Xilong Wang ◽  
Lixin Yue ◽  
Liuyi Dang ◽  
Jiajun Yang ◽  
Zhuo Chen ◽  
...  

Author(s):  
Kerri-Lee Wallom ◽  
María E. Fernández-Suárez ◽  
David A. Priestman ◽  
Danielle te Vruchte ◽  
Mylene Huebecker ◽  
...  

AbstractIt is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.


Author(s):  
Inka Brockhausen ◽  
John Schutzbach ◽  
Jiabei Wang ◽  
Beth Fishwick ◽  
Jennifer Brockhausen

Sign in / Sign up

Export Citation Format

Share Document