Central Doping of a Foreign Atom into the Silver Cluster for Catalytic Conversion of CO2 toward C−C Bond Formation

2018 ◽  
Vol 57 (31) ◽  
pp. 9775-9779 ◽  
Author(s):  
Yuanyuan Liu ◽  
Xiaoqi Chai ◽  
Xiao Cai ◽  
Mingyang Chen ◽  
Rongchao Jin ◽  
...  
2018 ◽  
Vol 130 (31) ◽  
pp. 9923-9927 ◽  
Author(s):  
Yuanyuan Liu ◽  
Xiaoqi Chai ◽  
Xiao Cai ◽  
Mingyang Chen ◽  
Rongchao Jin ◽  
...  

2005 ◽  
Vol 1 (4) ◽  
pp. 253-258 ◽  
Author(s):  
V.E. Matulis ◽  
O.A. Ivashkevich ◽  
V.S. Gurin

Study of interaction of NO and (NO)2 molecules with silver clusters has been carried out using the hybrid method S2LYP based on density functional theory (DFT). The role of cluster charge and site of adsorption on N–O stretch frequency, adsorption energy and geometry has been investigated. Four cluster models of different size have been used for simulation of (NO)2 adsorption on Ag{111} surface. The pronounced effect of N–N bond shortening in comparison with gaseous (NO)2 has been found due to adsorption of (NO)2 on silver cluster. This phenomenon is important as possible pathway of N–N bond formation in catalytic fragmentation of NO molecule. The calculations showed that the silver octamer is the best candidate for simulation of formation and fragmentation of (NO)2 on Ag{111} surface within the cluster model.


2020 ◽  
Author(s):  
Rui Guo ◽  
Xiaotian Qi ◽  
Hengye Xiang ◽  
Paul Geaneoates ◽  
Ruihan Wang ◽  
...  

Vinyl fluorides play an important role in drug development as they serve as bioisosteres for peptide bonds and are found in a range of biologically active molecules. The discovery of safe, general and practical procedures to prepare vinyl fluorides remains an important goal and challenge for synthetic chemistry. Here we introduce an inexpensive and easily-handled reagent and report simple, scalable, and metal-free protocols for the regioselective and stereodivergent hydrofluorination of alkynes to access both the E and Z isomers of vinyl fluorides. These conditions were suitable for a diverse collection of alkynes, including several highly-functionalized pharmaceutical derivatives. Mechanistic and DFT studies support C–F bond formation through a vinyl cation intermediate, with the (E)- and (Z)-hydrofluorination products forming under kinetic and thermodynamic control, respectively.<br>


2020 ◽  
Author(s):  
Sukdev Bag ◽  
Sadhan Jana ◽  
Sukumar Pradhan ◽  
Suman Bhowmick ◽  
Nupur Goswami ◽  
...  

<p>Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing group (DG) served as an ancillary ligand to ensure proximal <i>ortho</i>-, distal <i>meta</i>- and <i>para</i>-C-H functionalization over the last two decades. These covalently linked DGs necessitate two extra steps for a single C–H functionalization: introduction of DG prior to C–H activation and removal of DG post-functionalization. We introduce here a transient directing group for distal C(<i>sp<sup>2</sup></i>)-H functionalization <i>via</i> reversible imine formation. By overruling facile proximal C-H bond activation by imine-<i>N</i> atom, a suitably designed pyrimidine-based transient directing group (TDG) successfully delivered selective distal C-C bond formation. Application of this transient directing group strategy for streamlining the synthesis of complex organic molecules without any necessary pre-functionalization at the distal position has been explored.</p>


2018 ◽  
Author(s):  
Mohit Kapoor ◽  
Pratibha Chand-Thakuri ◽  
Michael Young

Carbon-carbon bond formation by transition metal-catalyzed C–H activation has become an important strategy to fabricate new bonds in a rapid fashion. Despite the pharmacological importance of <i>ortho</i>-arylbenzylamines, however, effective <i>ortho</i>-C–C bond formation from C–H bond activation of free primary and secondary benzylamines using Pd<sup>II</sup> remains an outstanding challenge. Presented herein is a new strategy for constructing <i>ortho</i>-arylated primary and secondary benzylamines mediated by carbon dioxide (CO<sub>2</sub>). The use of CO<sub>2</sub> is critical to allowing this transformation to proceed under milder conditions than previously reported, and that are necessary to furnish free amine products that can be directly used or elaborated without the need for deprotection. In cases where diarylation is possible, a chelate effect is demonstrated to facilitate selective monoarylation.


Sign in / Sign up

Export Citation Format

Share Document