scholarly journals Frontispiece: In Vivo Subcellular Mass Spectrometry Enables Proteo‐Metabolomic Single‐Cell Systems Biology in a Chordate Embryo Developing to a Normally Behaving Tadpole ( X. laevis )

2021 ◽  
Vol 60 (23) ◽  
Author(s):  
Camille Lombard‐Banek ◽  
Jie Li ◽  
Erika P. Portero ◽  
Rosemary M. Onjiko ◽  
Chase D. Singer ◽  
...  
2021 ◽  
Vol 133 (23) ◽  
Author(s):  
Camille Lombard‐Banek ◽  
Jie Li ◽  
Erika P. Portero ◽  
Rosemary M. Onjiko ◽  
Chase D. Singer ◽  
...  

2018 ◽  
Vol 8 ◽  
pp. 7-15 ◽  
Author(s):  
Simona Patange ◽  
Michelle Girvan ◽  
Daniel R. Larson

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1098
Author(s):  
Taylor M. Weiskittel ◽  
Cristina Correia ◽  
Grace T. Yu ◽  
Choong Yong Ung ◽  
Scott H. Kaufmann ◽  
...  

Together, single-cell technologies and systems biology have been used to investigate previously unanswerable questions in biomedicine with unparalleled detail. Despite these advances, gaps in analytical capacity remain. Machine learning, which has revolutionized biomedical imaging analysis, drug discovery, and systems biology, is an ideal strategy to fill these gaps in single-cell studies. Machine learning additionally has proven to be remarkably synergistic with single-cell data because it remedies unique challenges while capitalizing on the positive aspects of single-cell data. In this review, we describe how systems-biology algorithms have layered machine learning with biological components to provide systems level analyses of single-cell omics data, thus elucidating complex biological mechanisms. Accordingly, we highlight the trifecta of single-cell, systems-biology, and machine-learning approaches and illustrate how this trifecta can significantly contribute to five key areas of scientific research: cell trajectory and identity, individualized medicine, pharmacology, spatial omics, and multi-omics. Given its success to date, the systems-biology, single-cell omics, and machine-learning trifecta has proven to be a potent combination that will further advance biomedical research.


2021 ◽  
Vol 22 (20) ◽  
pp. 10913
Author(s):  
Ryouta Kamimura ◽  
Daisuke Uchida ◽  
Shin-ichiro Kanno ◽  
Ryo Shiraishi ◽  
Toshiki Hyodo ◽  
...  

TSC-22 (TGF-β stimulated clone-22) has been reported to induce differentiation, growth inhibition, and apoptosis in various cells. TSC-22 is a member of a family in which many proteins are produced from four different family genes. TSC-22 (corresponding to TSC22D1-2) is composed of 144 amino acids translated from a short variant mRNA of the TSC22D1 gene. In this study, we attempted to determine the intracellular localizations of the TSC22D1 family proteins (TSC22D1-1, TSC-22 (TSC22D1-2), and TSC22(86) (TSC22D1-3)) and identify the binding proteins for TSC22D1 family proteins by mass spectrometry. We determined that TSC22D1-1 was mostly localized in the nucleus, TSC-22 (TSC22D1-2) was localized in the cytoplasm, mainly in the mitochondria and translocated from the cytoplasm to the nucleus after DNA damage, and TSC22(86) (TSC22D1-3) was localized in both the cytoplasm and nucleus. We identified multiple candidates of binding proteins for TSC22D1 family proteins in in vitro pull-down assays and in vivo binding assays. Histone H1 bound to TSC-22 (TSC22D1-2) or TSC22(86) (TSC22D1-3) in the nucleus. Guanine nucleotide-binding protein-like 3 (GNL3), which is also known as nucleostemin, bound to TSC-22 (TSC22D1-2) in the nucleus. Further investigation of the interaction of the candidate binding proteins with TSC22D1 family proteins would clarify the biological roles of TSC22D1 family proteins in several cell systems.


Sign in / Sign up

Export Citation Format

Share Document