guanine nucleotide binding protein
Recently Published Documents


TOTAL DOCUMENTS

536
(FIVE YEARS 70)

H-INDEX

54
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ning Wang ◽  
Jun Li ◽  
Ju He ◽  
Yong-Guang Jing ◽  
Wei-dong Zhao ◽  
...  

Great concerns have raised crucial roles of long noncoding RNAs (lncRNAs) on colorectal cancer progression due to the increasing number of studies in cancer development. Previous studies reveal that lncRNA CCAT1 plays an important role in the progression of a variety of cancers. However, the role of lncRNA CCAT1 in colorectal cancer is still unclear. In this study, we found that in both colorectal tissues and cell lines the level of lncRNA CCAT1 was increased. Downregulation of lncRNA CCAT1 inhibited the proliferation, migration, and invasion of colorectal cell lines and promoted apoptosis. We then found that hsa-miR-4679 could bind to lncRNA CCAT1 directly, and with further functional analyses, we confirmed that lncRNA CCAT1 sponged hsa-miR-4679 to promote the progression of colorectal cancer. Next, we found that hsa-miR-4679 was directly bound to 3 ′ UTR of GNG10 (guanine nucleotide-binding protein, gamma 10). GNG10 overexpression promoted the progression of colorectal cancer, and this phenotype could be reversed by miR-4679 mimics. At last, we knocked down CCAT1 in vivo and found that sh-CCAT1 reduced the tumor size and the number of proliferating cells. In summary, our findings revealed that lncRNA CCAT1 facilitated colorectal cancer progression via the hsa-miR-4679/GNG10 axis and provided new potential therapeutic targets for colorectal cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John W. Kennedy ◽  
P. Monica Tsimbouri ◽  
Paul Campsie ◽  
Shatakshi Sood ◽  
Peter G. Childs ◽  
...  

AbstractModels of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast progenitor cells. We show that 1000 Hz frequency, 40 nm amplitude vibration reduces osteoclast formation and activity in human mononuclear CD14+ blood cells. Additionally, this nanoscale vibration both enhances osteogenesis and reduces osteoclastogenesis in a co-culture of primary human bone marrow stromal cells and bone marrow hematopoietic cells. Further, we use metabolomics to identify Akt (protein kinase C) as a potential mediator. Akt is known to be involved in bone differentiation via transforming growth factor beta 1 (TGFβ1) and bone morphogenetic protein 2 (BMP2) and it has been implicated in reduced osteoclast activity via Guanine nucleotide-binding protein subunit α13 (Gα13). With further validation, our nanovibrational bioreactor could be used to help provide humanised 3D models for drug screening.


2021 ◽  
Author(s):  
Andrey Zaznaev ◽  
Isaac Macwan

During a heart failure, higher amount of nucleoside diphosphate kinase (NDPK) enzyme in the sarcolemma membrane inhibits the synthesis of second messenger cyclic adenosine monophosphate (cAMP), which is required for the regulation of the calcium ion balance for normal functioning of the heart. In a dependent pathway, NDPK normally phosphorylates the stimulatory guanosine diphosphate, GDP(s), to a guanosine triphosphate, GTP(s), on the heterotrimeric (α, β and γ subunits) guanine nucleotide binding protein (G protein), resulting in the stimulation of the cAMP formation. In case of a heart failure, an increased quantity of NDPK also reacts with the inhibitory GDP(i), which is converted to a GTP(i), resulting in the inhibition of the cAMP formation. Typically, the βγ dimer of the G protein binds with hexameric NDPK-B/C complex and receives the phosphate at the residue His266 from residue His118 of NDPK-B. It is known that NDPK-C is required for NDPK-B to phosphorylate the G protein. In this work, the interactions between NDPK-B and NDPK-C are quantified in the presence and absence of graphene oxide (GO) as well as those between NDPK-B and GO through stability analysis involving hydrogen bonds, center of mass (COM), root mean square deviation (RMSD), and salt bridges, and energetics analysis involving van der Waals (VDW) and electrostatic energies. Furthermore, the role of water molecules at the interface of NDPK-B and NDPK-C as well as between NDPK-B and GO is investigated to understand the nature of interactions. It is found that the adsorption of NDPK-B on GO triggers a potential conformational change in the structure of NDPK-B, resulting in a diminished interaction with NDPK-C. This is confirmed through a reduced center of mass (COM) distance between NDPK-B and GO (from 40 Å to 30 Å) and an increased COM distance between NDPK-B and NDPK-C (from 50 Å to 60 Å). Furthermore, this is also supported by fewer salt bridges between NDPK-B and NDPK-C, and an increased number of hydrogen bonds formed by the interfacial water molecules. As NDPK-C is crucial to be complexed with NDPK-B for successful interaction of NDPK-B with the G protein, this finding shows that GO can suppress the interactions between NDPK-B/C and G proteins, thereby providing an additional insight into the role of GO in the heart failure mechanism.


2021 ◽  
Vol 22 (21) ◽  
pp. 11601
Author(s):  
Eun-Jung Sohn ◽  
Yun-Kyeong Nam ◽  
Hwan-Tae Park

Although microRNAs (miRNAs or miRs) have been studied in the peripheral nervous system, their function in Schwann cells remains elusive. In this study, we performed a microRNA array analysis of cyclic adenosine monophosphate (cAMP)-induced differentiated primary Schwann cells. KEGG pathway enrichment analysis of the target genes showed that upregulated miRNAs (mR212-5p, miR335, miR20b-5p, miR146b-3p, and miR363-5p) were related to the calcium signaling pathway, regulation of actin cytoskeleton, retrograde endocannabinoid signaling, and central carbon metabolism in cancer. Several key factors, such as purinergic receptors (P2X), guanine nucleotide-binding protein G(olf) subunit alpha (GNAL), P2RX5, P2RX3, platelet-derived growth factor receptor alpha (PDGFRA), and inositol 1,4,5-trisphosphate receptor type 2 (ITPR2; calcium signaling pathway) are potential targets of miRNAs regulating cAMP. Our analysis revealed that miRNAs were differentially expressed in cAMP-treated Schwann cells; miRNA363-5p was upregulated and directly targeted the P2X purinoceptor 4 (P2RX4)-UTR, reducing the luciferase activity of P2RX4. The expression of miRNA363-5p was inhibited and the expression of P2RX4 was upregulated in sciatic nerve injury. In contrast, miRNA363-5p expression was upregulated and P2RX4 expression was downregulated during postnatal development. Of note, a P2RX4 antagonist counteracted myelin degradation after nerve injury and increased pERK and c-Jun expression. Interestingly, a P2RX4 antagonist increased the levels of miRNA363-5p. This study suggests that a double-negative feedback loop between miRNA363-5p and P2RX4 contributes to the dedifferentiation and migration of Schwann cells after nerve injury.


2021 ◽  
Vol 22 (20) ◽  
pp. 10913
Author(s):  
Ryouta Kamimura ◽  
Daisuke Uchida ◽  
Shin-ichiro Kanno ◽  
Ryo Shiraishi ◽  
Toshiki Hyodo ◽  
...  

TSC-22 (TGF-β stimulated clone-22) has been reported to induce differentiation, growth inhibition, and apoptosis in various cells. TSC-22 is a member of a family in which many proteins are produced from four different family genes. TSC-22 (corresponding to TSC22D1-2) is composed of 144 amino acids translated from a short variant mRNA of the TSC22D1 gene. In this study, we attempted to determine the intracellular localizations of the TSC22D1 family proteins (TSC22D1-1, TSC-22 (TSC22D1-2), and TSC22(86) (TSC22D1-3)) and identify the binding proteins for TSC22D1 family proteins by mass spectrometry. We determined that TSC22D1-1 was mostly localized in the nucleus, TSC-22 (TSC22D1-2) was localized in the cytoplasm, mainly in the mitochondria and translocated from the cytoplasm to the nucleus after DNA damage, and TSC22(86) (TSC22D1-3) was localized in both the cytoplasm and nucleus. We identified multiple candidates of binding proteins for TSC22D1 family proteins in in vitro pull-down assays and in vivo binding assays. Histone H1 bound to TSC-22 (TSC22D1-2) or TSC22(86) (TSC22D1-3) in the nucleus. Guanine nucleotide-binding protein-like 3 (GNL3), which is also known as nucleostemin, bound to TSC-22 (TSC22D1-2) in the nucleus. Further investigation of the interaction of the candidate binding proteins with TSC22D1 family proteins would clarify the biological roles of TSC22D1 family proteins in several cell systems.


2021 ◽  
Author(s):  
Aleksey V Belikov ◽  
Danila V Otnykov ◽  
Alexey D Vyatkin ◽  
Sergey V Leonov

Elucidating crucial driver genes is paramount for understanding the cancer origins and mechanisms of progression, as well as selecting targets for molecular therapy. Cancer genes are usually ranked by the frequency of mutation, which, however, does not necessarily reflect their driver strength. Here we hypothesize that driver strength is higher for genes that are preferentially mutated in patients with few driver mutations overall, because these few mutations should be strong enough to initiate cancer. We propose a formula to calculate the corresponding Driver Strength Index (DSI), as well as the Normalized Driver Strength Index (NDSI), the latter completely independent of the overall gene mutation frequency. We validate these indices using the largest database of human cancer mutations - TCGA PanCanAtlas, multiple established algorithms for cancer driver prediction (2020plus, CHASMplus, CompositeDriver, dNdScv, DriverNet, HotMAPS, IntOGen Plus, OncodriveCLUSTL, OncodriveFML) and four custom computational pipelines that integrate driver contributions from SNA, CNA and aneuploidy at the patient-level resolution. We demonstrate that NDSI provides substantially different rankings of genes as compared to DSI and frequency approach. For example, NDSI highlighted the importance of guanine nucleotide-binding protein subunits GNAQ, GNA11, GNAI1, GNAZ and GNB3, General Transcription Factor II family members GTF2I and GTF2F2, as well as fibroblast growth factor receptors FGFR2 and FGFR3. Intriguingly, NDSI prioritized CIC, FUBP1, IDH1 and IDH2 mutations, as well as 19q and 1p chromosome arm losses, that comprise characteristic molecular alterations of gliomas. KEGG analysis shows that top NDSI-ranked genes comprise PDGFRA-GRB2-SOS2-HRAS/NRAS-BRAF pathway, GNAQ/GNA11-HRAS/NRAS-BRAF pathway, GNB3-AKT1-IKBKG/GSK3B/CDKN1B pathway and TCEB1-VHL pathway. NDSI does not seem to correlate with the number of protein-protein interactions. We share our software to enable calculation of DSI and NDSI for outputs of any third-party driver prediction algorithms or their combinations.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Yu Fu ◽  
Zhili Xin ◽  
Ziji Ling ◽  
Hanyu Xie ◽  
Tao Xiao ◽  
...  

Abstract Background Fibrous dysplasia (FD) is a bone marrow stromal cell (BMSC) disease caused by activating mutations of guanine nucleotide-binding protein alpha-stimulating activity polypeptide (GNAS) and is characterized by increased proliferative activity and disrupted osteogenesis of BMSCs. However, the molecular mechanisms regulating the pathophysiologic features of BMSCs in FD remain unknown. This study aimed to identify and verify the roles of the CREB1-miR-181a-5p regulatory loop in FD pathophysiology. Methods MicroRNA (miRNA) sequencing analysis was used to identify the possible miRNAs implicated in FD. The proliferation, apoptosis, and osteogenic differentiation of BMSCs, as well as the osteoclast-induced phenotype, were measured and compared after exogenous miR-181a-5p transfection into FD BMSCs or miR-181a-5p inhibitor transfection into normal BMSCs. Chromatin immunoprecipitation and luciferase reporter assays were performed to verify the interactions between CREB1 and miR-181a-5p and their effects on the FD pathological phenotype. Results Compared to normal BMSCs, FD BMSCs showed decreased miR-181a-5p levels and exhibited increased proliferative activity, decreased apoptotic capacity, and impaired osteogenesis. FD BMSCs also showed a stronger osteoclast activation effect. miR-181a-5p overexpression reversed the pathophysiologic features of FD BMSCs, whereas miR-181a-5p suppression induced an FD-like phenotype in normal BMSCs. Mechanistically, miR-181a-5p was the downstream target of CREB1, and CREB1 was posttranscriptionally regulated by miR-181a-5p. Conclusions Our study identifies that the interaction loop between CREB1 and miR-181a-5p plays a crucial role in regulating the pathophysiologic features of FD BMSCs. MiR-181a-5p may be a potential therapeutic target for the treatment of FD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meng-Lin Chao ◽  
Shanshan Luo ◽  
Chao Zhang ◽  
Xuechun Zhou ◽  
Miao Zhou ◽  
...  

AbstractAtherosclerosis-associated cardiovascular disease is one of the main causes of death and disability among patients with diabetes mellitus. However, little is known about the impact of S-nitrosylation in diabetes-accelerated atherosclerosis. Here, we show increased levels of S-nitrosylation of guanine nucleotide-binding protein G(i) subunit alpha-2 (SNO-GNAI2) at Cysteine 66 in coronary artery samples from diabetic patients with atherosclerosis, consistently with results from mice. Mechanistically, SNO-GNAI2 acted by coupling with CXCR5 to dephosphorylate the Hippo pathway kinase LATS1, thereby leading to nuclear translocation of YAP and promoting an inflammatory response in endothelial cells. Furthermore, Cys-mutant GNAI2 refractory to S-nitrosylation abrogated GNAI2-CXCR5 coupling, alleviated atherosclerosis in diabetic mice, restored Hippo activity, and reduced endothelial inflammation. In addition, we showed that melatonin treatment restored endothelial function and protected against diabetes-accelerated atherosclerosis by preventing GNAI2 S-nitrosylation. In conclusion, SNO-GNAI2 drives diabetes-accelerated atherosclerosis by coupling with CXCR5 and activating YAP-dependent endothelial inflammation, and reducing SNO-GNAI2 is an efficient strategy for alleviating diabetes-accelerated atherosclerosis.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 561
Author(s):  
Gavin J. Martin ◽  
Sarah E. Lower ◽  
Anton Suvorov ◽  
Seth M. Bybee

Most organisms are dependent on sensory cues from their environment for survival and reproduction. Fireflies (Coleoptera: Lampyridae) represent an ideal system for studying sensory niche adaptation due to many species relying on bioluminescent communication; as well as a diversity of ecologies. Here; using transcriptomics; we examine the phototransduction pathway in this non-model organism; and provide some of the first evidence for positive selection in the phototransduction pathway beyond opsins in beetles. Evidence for gene duplications within Lampyridae are found in inactivation no afterpotential C and inactivation no afterpotential D. We also find strong support for positive selection in arrestin-2; inactivation no afterpotential D; and transient receptor potential-like; with weak support for positive selection in guanine nucleotide-binding protein G(q) subunit alpha and neither inactivation nor afterpotential C. Taken with other recent work in flies; butterflies; and moths; this represents an exciting new avenue of study as we seek to further understand diversification and constraint on the phototransduction pathway in light of organism ecology.


Sign in / Sign up

Export Citation Format

Share Document