State diagram of phase transition temperatures and solvent-induced recovery behavior of shape-memory polymer

2012 ◽  
Vol 127 (4) ◽  
pp. 2896-2904 ◽  
Author(s):  
Haibao Lu

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 397
Author(s):  
Sandra Paszkiewicz ◽  
Izabela Irska ◽  
Agata Zubkiewicz ◽  
Anna Szymczyk ◽  
Elżbieta Piesowicz ◽  
...  

A series of poly(hexamethylene 2,5-furanodicarboxylate)-block-poly(tetrahydrofuran) (PHF-b-F-pTHF) copolymers were synthesized using a two-stage procedure, employing transesterification and polycondensation. The content of pTHF flexible segments varied from 25 to 75 wt.%. 1H nuclear magnetic resonance (NMR) and Fourier transformed infrared spectroscopy (FTIR) analyses were applied to confirm the molecular structure of the materials. Differential scanning calorimetry (DSC), dynamic mechanical measurements (DMTA), and X-ray diffraction (XRD) allowed characterizing the supramolecular structure of the synthesized copolymers. SEM analysis was applied to show the differences in the block copolymers’ morphologies concerning their chemical structure. The influence of the number of flexible segments in the copolymers on the phase transition temperatures, thermal properties, as well as the thermo-oxidative and thermal stability was analyzed. TGA analysis, along with tensile tests (static and cyclic), confirmed the utilitarian performance of the synthesized bio-based materials. It was found that an increase in the amount of pTHF caused the increase of both number-average and weight-average molecular weights and intrinsic viscosities, and at the same time causing the shift of the values of phase transition temperatures toward lower ones. Besides, PHF-b-F-pTHF containing 75 wt.% of F-pTHF units was proved to be a promising thermoplastic shape memory polymer (SMP) with a switching temperature of 20 °C.





RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17622-17629
Author(s):  
Ae Ran Lim

We studied the thermal behavior and structural dynamics of [NH3(CH2)3NH3]CdBr4 near phase transition temperatures.



2021 ◽  
Author(s):  
Dongdong Lu ◽  
Mingning Zhu ◽  
Jing Jin ◽  
Brian R. Saunders

Thermally- and pH-responsive microgels (MGs) and hydrogels are fascinating network systems that have been applied in biomedical engineering and sensing. The volume-swelling ratio (Q) and the volume-phase transition temperatures (VPTTs)...



Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1900
Author(s):  
Ramin Hosseinnezhad ◽  
Iurii Vozniak ◽  
Fahmi Zaïri

The paper discusses the possibility of using in situ generated hybrid polymer-polymer nanocomposites as polymeric materials with triple shape memory, which, unlike conventional polymer blends with triple shape memory, are characterized by fully separated phase transition temperatures and strongest bonding between the polymer blends phase interfaces which are critical to the shape fixing and recovery. This was demonstrated using the three-component system polylactide/polybutylene adipateterephthalate/cellulose nanofibers (PLA/PBAT/CNFs). The role of in situ generated PBAT nanofibers and CNFs in the formation of efficient physical crosslinks at PLA-PBAT, PLA-CNF and PBAT-CNF interfaces and the effect of CNFs on the PBAT fibrillation and crystallization processes were elucidated. The in situ generated composites showed drastically higher values of strain recovery ratios, strain fixity ratios, faster recovery rate and better mechanical properties compared to the blend.



AIP Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 056428 ◽  
Author(s):  
Shivakumar G. Hunagund ◽  
Shane M. Harstad ◽  
Ahmed A. El-Gendy ◽  
Shalabh Gupta ◽  
Vitalij K. Pecharsky ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document