Synthesis, in‐vitro and in‐silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors

2020 ◽  
Vol 353 (4) ◽  
pp. 1900309 ◽  
Author(s):  
Sherif M. H. Sanad ◽  
Ahmed A. M. Ahmed ◽  
Ahmed E. M. Mekky
Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6381
Author(s):  
Dikdik Kurnia ◽  
Zenika Febian Ramadhanty ◽  
Aprilina Mora Ardani ◽  
Achmad Zainuddin ◽  
Hendra Dian Adhita Dharsono ◽  
...  

The utilization of medicinal plants has long been explored for the discovery of antibacterial agents and the most effective mechanisms or new targets that can prevent and control the spread of antibiotic resistance. One kind of bacterial cell wall inhibition is the inactivation of the MurA enzyme that contributes to the formation of peptidoglycan. Another approach is to interfere with the cell–cell communication of bacteria called the Quorum sensing (QS) system. The blocking of auto-inducer such as gelatinase biosynthesis-activating pheromone (GBAP) can also suppress the virulence factors of gelatinase and serine protease. This research, in particular, aims to analyze lead compounds as antibacterial and anti-QS agents from Gambir (Uncaria gambir Roxburgh) through protein inhibition by in silico study. Antibacterial agents were isolated by bioactivity-guided isolation using a combination of chromatographic methods, and their chemical structures were determined by spectroscopic analysis methods. The in vitro antibacterial activity was evaluated by disc diffusion methods to determine inhibitory values. Meanwhile, in the in silico analysis, the compound of Uncaria gambir was used as ligand and compared with fosfomycin, ambuic acid, quercetin, and taxifolin as the standard ligand. These ligands were attached to MurA, GBAP, gelatinase, and serine proteases using Autodock Vina in PyRx 0.8 followed by PYMOL for combining the ligand conformation and proteins. plus programs to explore the complex, and visualized by Discovery Studio 2020 Client program. The antibacterial agent was identified as catechin that showed inhibitory activity against Enterococcus faecalis ATCC 29212 with inhibition zones of 11.70 mm at 10%, together with MIC and MBC values of 0.63 and 1.25 μg/mL, respectively. In the in silico study, the molecular interaction of catechin with MurA, GBAP, and gelatinase proteins showed good binding energy compared with two positive controls, namely fosfomycin and ambuic acid. It is better to use catechin–MurA (−8.5 Kcal/mol) and catechin–gelatinase (−7.8 Kcal/mol), as they have binding energies which are not marginally different from quercetin and taxifolin. On the other hand, the binding energy of serine protease is lower than quercetin, taxifolin, and ambuic acid. Based on the data, catechin has potency as an antibacterial through the inhibition of GBAP proteins, gelatinase, and serine protease that play a role in the QS system. This is the first discovery of the potential of catechin as an alternative antibacterial agent with an effective mechanism to prevent and control oral disease affected by antibiotic resistance.


2012 ◽  
Vol 130 ◽  
pp. S167
Author(s):  
Maria Ditsa ◽  
George Geromihalos ◽  
Eleftheria Tragoulia ◽  
Dimitra Markala ◽  
Chrisa Meleti ◽  
...  

2014 ◽  
Vol 23 (6) ◽  
pp. 3220-3226 ◽  
Author(s):  
Moacyr Jesus Barreto de Melo Rêgo ◽  
Marina Rocha Galdino-Pitta ◽  
Daniel Tarciso Martins Pereira ◽  
Juliana Cruz da Silva ◽  
Marcelo Montenegro Rabello ◽  
...  

2019 ◽  
Vol 16 (32) ◽  
pp. 894-898
Author(s):  
D. F. SILVA ◽  
H. D. NETO ◽  
M. D. L. FERREIRA ◽  
A. A. O. FILHO ◽  
E. O. LIMA

β-citronellol (3,7-dimethyl-6-octen-1-ol) has been exhibiting a number of pharmacological effects that creates interest about its antimicrobial potential, since several substances of the monoterpene class have already demonstrated to possess activity in this profile. In addition, the emergence of fungal species resistant to current pharmacotherapy poses a serious challenge to health systems, making it necessary to search for new effective therapeutic alternatives to deal with this problem. In this study, the antimicrobial profile of β-citronellol was analyzed. The Prediction of Activity Spectra for Substances (PASS) online software was used to study the antimicrobial activity of the β-citronellol molecule by the use of in silico analysis. In contrast, an in vitro antifungal study of this monoterpene was carried out. For this purpose, the Minimum Inhibitory Concentration (MIC) was determined by the microdilution technique in 96-well plates in Saboraud Dextrose Broth/RPMI against sensitive strains of Candida albicans, and this assay was performed in duplicate. In the in silico analysis of the antimicrobial profile, it was revealed that the monoterpene β-citronellol had a diverse antimicrobial bioactivity profile. For the antifungal activity, it presented a percentage value with Pa: 58.4% (predominant) and its MIC of 128 μg/mL, which was equivalent for all strains tested. The in silico study of the β-citronellol molecule allowed us to consider that the monoterpenoid is very likely to be bioactive against agents that cause fungal infections.


2020 ◽  
Vol 11 (1) ◽  
pp. 20190126 ◽  
Author(s):  
B. J. M. van Rooij ◽  
G. Závodszky ◽  
A. G. Hoekstra ◽  
D. N. Ku

The influence of the flow environment on platelet aggregation is not fully understood in high-shear thrombosis. The objective of this study is to investigate the role of a high shear rate in initial platelet aggregation. The haemodynamic conditions in a microfluidic device are studied using cell-based blood flow simulations. The results are compared with in vitro platelet aggregation experiments performed with porcine whole blood (WB) and platelet-rich-plasma (PRP). We studied whether the cell-depleted layer in combination with high shear and high platelet flux can account for the distribution of platelet aggregates. High platelet fluxes at the wall were found in silico . In WB, the platelet flux was about twice as high as in PRP. Additionally, initial platelet aggregation and occlusion were observed in vitro in the stenotic region. In PRP, the position of the occlusive thrombus was located more downstream than in WB. Furthermore, the shear rates and stresses in cell-based and continuum simulations were studied. We found that a continuum simulation is a good approximation for PRP. For WB, it cannot predict the correct values near the wall.


2013 ◽  
Vol 66 ◽  
pp. 480-488 ◽  
Author(s):  
Saeed Emami ◽  
Shahaboddin Shojapour ◽  
Mohammad Ali Faramarzi ◽  
Nasrin Samadi ◽  
Hamid Irannejad

RSC Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 7041-7045 ◽  
Author(s):  
K. Kuca ◽  
J. Korabecny ◽  
R. Dolezal ◽  
E. Nepovimova ◽  
O. Soukup ◽  
...  
Keyword(s):  

Tetroxime – a unique bisquaternary compound with four oxime groups.


2020 ◽  
Vol 50 (15) ◽  
pp. 2376-2389 ◽  
Author(s):  
Ahmed E. M. Mekky ◽  
Sherif M. H. Sanad ◽  
Ahmed Y. Said ◽  
Mohamed A. A. Elneairy

2019 ◽  
Vol 166 (4) ◽  
pp. 444-456
Author(s):  
Olajumoke A. Oyebode ◽  
Ochuko L. Erukainure ◽  
Collins U. Ibeji ◽  
Neil A. Koorbanally ◽  
Md. Shahidul Islam

Sign in / Sign up

Export Citation Format

Share Document