Output Tracking for One-Dimensional Schrödinger Equation subject to Boundary Disturbance

2017 ◽  
Vol 20 (2) ◽  
pp. 659-668 ◽  
Author(s):  
Jun-Jun Liu ◽  
Jun-Min Wang ◽  
Ya-Ping Guo
Author(s):  
Frank S. Levin

Chapter 7 illustrates the results obtained by applying the Schrödinger equation to a simple pedagogical quantum system, the particle in a one-dimensional box. The wave functions are seen to be sine waves; their wavelengths are evaluated and used to calculate the quantized energies via the de Broglie relation. An energy-level diagram of some of the energies is constructed; on it are illustrations of the corresponding wave functions and probability distributions. The wave functions are seen to be either symmetric or antisymmetric about the midpoint of the line representing the box, thereby providing a lead-in to the later exploration of certain symmetry properties of multi-electron atoms. It is next pointed out that the Schrödinger equation for this system is identical to Newton’s equation describing the vibrations of a stretched musical string. The different meaning of the two solutions is discussed, as is the concept and structure of linear superpositions of them.


2003 ◽  
Vol 14 (08) ◽  
pp. 1087-1105 ◽  
Author(s):  
ZHONGCHENG WANG ◽  
YONGMING DAI

A new twelfth-order four-step formula containing fourth derivatives for the numerical integration of the one-dimensional Schrödinger equation has been developed. It was found that by adding multi-derivative terms, the stability of a linear multi-step method can be improved and the interval of periodicity of this new method is larger than that of the Numerov's method. The numerical test shows that the new method is superior to the previous lower orders in both accuracy and efficiency and it is specially applied to the problem when an increasing accuracy is requested.


2015 ◽  
Vol 06 (01) ◽  
pp. 1450001 ◽  
Author(s):  
Ratikanta Behera ◽  
Mani Mehra

In this paper, we present a dynamically adaptive wavelet method for solving Schrodinger equation on one-dimensional, two-dimensional and on the sphere. Solving one-dimensional and two-dimensional Schrodinger equations are based on Daubechies wavelet with finite difference method on an arbitrary grid, and for spherical Schrodinger equation is based on spherical wavelet over an optimal spherical geodesic grid. The method is applied to the solution of Schrodinger equation for computational efficiency and achieve accuracy with controlling spatial grid adaptation — high resolution computations are performed only in regions where a solution varies greatly (i.e., near steep gradients, or near-singularities) and a much coarser grid where the solution varies slowly. Thereupon the dynamic adaptive wavelet method is useful to analyze local structure of solution with very less number of computational cost than any other methods. The prowess and computational efficiency of the adaptive wavelet method is demonstrated for the solution of Schrodinger equation on one-dimensional, two-dimensional and on the sphere.


Sign in / Sign up

Export Citation Format

Share Document