An Extended State Observer Based Fractional Order Sliding‐Mode Control for a Novel Electro‐Hydraulic Servo System with Iso‐Actuation Balancing and Positioning

2018 ◽  
Vol 21 (1) ◽  
pp. 289-301 ◽  
Author(s):  
Qiang Gao ◽  
Yuanlong Hou ◽  
Jingbao Liu ◽  
Runming Hou ◽  
Mingming Lv ◽  
...  
Author(s):  
Shuyou Yu ◽  
Yangyang Feng ◽  
Xiaoping Yang

Tracking control of piezoelectric actuators is considered in the article. A Hammerstein model is used to depict the rate-dependent hysteresis characteristics of piezoelectric actuators, in which a Bouc–Wen model is to describe the static hysteresis characteristic, and a linear time-invariant system is to describe its rate-dependent characteristics. An inverse Bouc–Wen model connected in series with the piezoelectric actuator is used to compensate the static hysteresis nonlinearity of piezoelectric actuators. Furthermore, an extended state observer–based fractional order sliding-mode control is designed to deal with higher order unmodelled dynamics and inverse compensation errors. Moreover, the bounds of the estimation error of the extended state observer are estimated, and the convergence of the proposed control strategy is proved. Experimental results show that the proposed scheme can track both single and composite input signals within a certain frequency range. Compared with extended state observer–based conventional sliding-mode controller, the proposed scheme has faster response time and smaller tracking error.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098603
Author(s):  
Daoxiong Gong ◽  
Mengyao Pei ◽  
Rui He ◽  
Jianjun Yu

Pneumatic artificial muscles (PAMs) are expected to play an important role in endowing the advanced robot with the compliant manipulation, which is very important for a robot to coexist and cooperate with humans. However, the strong nonlinear characteristics of PAMs hinder its wide application in robots, and therefore, advanced control algorithms are urgently needed for making the best use of the advantages and bypassing the disadvantages of PAMs. In this article, we propose a full-order sliding mode control extended state observer (fSMC-ESO) algorithm that combines the ESO and the fSMC for a robotic joint actuated by a pair of antagonistic PAMs. The fSMC is employed to eliminate the chattering and to guarantee the finite-time convergence, and the ESO is adopted to observe both the total disturbance and the states of the robot system, so that we can inhibit the disturbance and compensate the nonlinearity efficiently. Both simulations and physical experiments are conducted to validate the proposed method. We suggest that the proposed method can be applied to the robotic systems actuated by PAMs and remarkably improve the performance of the robot system.


2011 ◽  
Vol 19 (10) ◽  
pp. 2409-2418
Author(s):  
马晓军 MA Xiao-jun ◽  
袁东 YUAN Dong ◽  
李匡成 LI Kuang-cheng ◽  
魏曙光 WEI Shu-guang

Sign in / Sign up

Export Citation Format

Share Document