electronic throttle
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 53)

H-INDEX

24
(FIVE YEARS 3)

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2879
Author(s):  
Hongxia Ge ◽  
Siteng Li ◽  
Chunyue Yan

With the continuous advancement of electronic technology, auto parts manufacturing institutions are gradually applying electronic throttles to automobiles for precise control. Based on the visual angle model (VAM), a car-following model considering the electronic throttle angle of the preceding vehicle is proposed. The stability conditions are obtained through linear stability analysis. By means of nonlinear analysis, the time-dependent Ginzburg–Landau (TDGL) equation is derived first, and then the modified Korteweg-de-Vries (mKdV) equation is derived. The relationship between the two is thus obtained. Finally, in the process of numerical simulations and exploration, it is shown how the visual angle and electronic throttle affect the stability of traffic flow. The simulation results in MATLAB software verify the validity of the model, indicating that the visual angle and electronic throttle can improve traffic stability.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shun-Chang Chang

This study addresses bifurcation analysis and controlling chaos in a vehicular electronic throttle. Using analysis techniques from nonlinear dynamics of an electronic throttle system based on bifurcation diagrams, we establish the existence of period-doubling and intermittency routes to chaos. The largest Lyapunov exponent is estimated from the synchronization to identify periodic and chaotic motions. Finally, the proposed continuous feedback control is employed to control chaos. To verify the effectiveness of the raised control strategy, we present a number of numerical simulations.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110454
Author(s):  
Erdal Tunçer ◽  
Tarkan Sandalcı ◽  
Yasin Karagöz

In this study, a single cylinder of 1.16 L, naturally aspirated engine was converted to a spark ignition engine, which was a diesel engine operating with natural gas as fuel. By placing electronic throttle, electronic ignition module, gas fuel injectors and proximity sensors on the test engine, the engine has been turned into a positive ignition engine that can work with natural gas as fuel, thanks to the electronic control unit developed by our project team. Then, in the study performed, different cycle skipping strategies were experimentally investigated at a constant engine speed of 1565 rpm, in accordance with the generator operating conditions. Engine performance, emissions (CO, HC, and NOx), and combustion characteristics (cylinder pressure, rate of heat release, etc.) of cycle skipping strategies were experimentally investigated with natural gas as fuel in Normal, 3N1S, 2N1S, and 1N1S engine operating modes. According to the results obtained, specific fuel consumption, CO and HC values improved in all cycle skipping operating conditions, except for NOx, but the best results were obtained in 2N1S operating conditions; it was concluded that the specific fuel consumption, CO and HC values improved by 11.19%, 61.89%, and 65.60%, respectively.


2021 ◽  
Vol 11 (17) ◽  
pp. 7899
Author(s):  
Manés F. Cabanas ◽  
Salvador B. Duque ◽  
Juan D. González ◽  
Francisco P. González ◽  
María G. Fernández

The main drawback of unmanned aerial systems (UAS) is that almost their entire field of application is autonomous in terms of energy. Flights beyond 50 min are nearly impossible when using conventional energy storage systems (lithium-ion polymer or lithium-ion batteries). Several commercial products have been developed using hybrid systems (H-UAS). Although the improvement they have provided is undeniable, H-UAS in the present market are strongly limited by their low thrust vs. weight ratio, which is caused by limited electrical power generation and a non-optimal energy conversion with relatively low efficiencies. This paper reviews these systems to show the preliminary results of a prototype of hybrid generator which state-of-the-art electronics as well as a new approach using a supercapacitor (SC) array are used to save fuel, increase the thrust vs. weight ratio, optimize losses during conversion and prevent the overheating of the internal combustion unit (ICU). Whereas current generators mostly operate with the ICU at a constant speed, delivering maximum power, the presented prototype includes a throttle control system, and the engine works with a variable regime according to the power demand. Thus, fuel consumption is reduced, as well as heating and wear. The lifespan of the engine is also increased, and the time between maintenance operations is lengthened. The designed system provides almost twice the power of the hybrid current generators. The reduction in the RPM regime of the engine is achieved by means of a supercapacitor array that provides the necessary energy to keep the DC output power constant during the engine acceleration when the flight envelope experiences a perturbation or a sudden manoeuvre is performed by the pilot. To obtain maximum efficiency, the diode rectifiers and conventional converters used in the reviewed products are replaced by synchronous converters and rectifiers. The whole system is controlled by means of a FPGA where a specific control loop has been implemented for every device: ICU’s throttle, DC bus converter, charge and discharge of the SC’s array, cooling and monitoring of temperature for the cylinders heads, and on-line transmission, by means of a XBEE™ module, of all the monitored data to the flight ground station.


2021 ◽  
pp. 2150385
Author(s):  
Yulei Jiao ◽  
Rongjun Cheng ◽  
Hongxia Ge

Considering the effect of driver’s expectation and the electronic throttle (ET), an improved two-lane continuum model is proposed. The linear stability condition of the new model is obtained by using the linear stability theory. The nonlinear analysis method is used to study the evolution process of traffic density wave near the neutral stability curve, and the improved KdV-Burgers equation is obtained. The numerical simulation analysis of the improved traffic flow model is carried out to further study how the changes of the expected effect of drivers affect the vehicle speed, the density of traffic flow, vehicle fuel consumption and exhaust emissions. Numerical results demonstrate that the new continuum model presented herein can well describe the developments of shock waves and rarefaction waves, and considering the factor of driver’s expectation and ET effect has a positive impact on the dynamic characteristic of macroscopic flow.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3494
Author(s):  
Deivamoney Josephine Selvarani Ruth ◽  
Kaliaperumal Dhanalakshmi ◽  
Seung-Bok Choi

This paper presents an active accelerator pedal system based on an integrated sensor and actuator using shape memory alloy (SMA) for speed control and to create haptics in the accelerator pedal. A device named sensaptics is developed with a pair of bi-functional SMA wires instrumented in a synergistic configuration function as an active sensor for positioning the accelerator pedal (pedal position sensing) to control the vehicle speed through electronic throttle and as a variable impedance actuator to generate active force (haptic) feedback to the driver. The reaction force emanated from the pedal alerts the driver and takes appropriate control action by slowing down the vehicle, in harmony with the road’s condition. The design is developed as a proof-of-concept device and is tested and evaluated in a real-time common rail diesel system for rail pressure regulation and over speeding tests, and the responses and performances are found to be promising.


Sign in / Sign up

Export Citation Format

Share Document