scholarly journals Turbulent magnetic energy spectrum and the cancellation function of solar photospheric magnetic fields

2013 ◽  
Vol 334 (9) ◽  
pp. 952-955
Author(s):  
G. Marschalkó ◽  
K. Petrovay
2017 ◽  
Vol 83 (6) ◽  
Author(s):  
A. F. A. Bott ◽  
C. Graziani ◽  
P. Tzeferacos ◽  
T. G. White ◽  
D. Q. Lamb ◽  
...  

Recent laser-plasma experiments (Foxet al.,Phys. Rev. Lett., vol. 111, 2013, 225002; Huntingtonet al.,Nat. Phys., vol. 11(2), 2015, 173–176; Tzeferacoset al.,Phys. Plasmas, vol. 24(4), 2017a, 041404; Tzeferacoset al., 2017b,arXiv:1702.03016[physics.plasm-ph]) report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for a complete understanding of the physical processes these experiments are attempting to investigate. In this paper, we show how a proton-imaging diagnostic can be used to determine a range of relevant magnetic-field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. This ‘Kugland image-flux relation’ was previously derived (Kuglandet al., Rev. Sci. Instrum.vol. 83(10), 2012, 101301) under simplifying assumptions typically valid in actual proton-imaging set-ups. We conclude that, as with regular electromagnetic fields, features of the beam’s final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter – the contrast parameter$\unicode[STIX]{x1D707}\equiv d_{s}/{\mathcal{M}}l_{B}$– which quantifies the relative size of the correlation length$l_{B}$of the stochastic field, proton displacements$d_{s}$due to magnetic deflections and the image magnification${\mathcal{M}}$. For stochastic magnetic fields, we establish the existence of four contrast regimes, under which proton-flux images relate to their parent fields in a qualitatively distinct manner. These are linear, nonlinear injective, caustic and diffusive. The diffusive regime is newly identified and characterised. The nonlinear injective regime is distinguished from the caustic regime in manifesting nonlinear behaviour, but as in the linear regime, the path-integrated magnetic field experienced by the beam can be extracted uniquely. Thus, in the linear and nonlinear injective regimes we show that the magnetic-energy spectrum can be obtained under a further statistical assumption of isotropy. This is not the case in the caustic or diffusive regimes. We discuss complications to the contrast-regime characterisation arising for inhomogeneous, multi-scale stochastic fields, which can encompass many contrast regimes, as well as limitations currently placed by experimental capabilities on one’s ability to extract magnetic-field statistics. The results presented in this paper are of consequence in providing a comprehensive description of proton images of stochastic magnetic fields, with applications for improved analysis of proton-flux images.


Both the penetrating power of the cosmic rays through material ab­sorbers and their ability to reach the earth in spite of its magnetic field, make it certain that the energy of many of the primary particles must reach at least 10 11 e-volts. However, the energy measurements by Kunze, and by Anderson, using cloud chambers in strong magnetic fields, have extended only to about 5 x 10 9 e-volts. Particles of greater energy were reported, but the curvature of their tracks was too small to be measured with certainty. We have extended these energy measurements to somewhat higher energies, using a large electro-magnet specially built for the purpose and described in Part I. As used in these experiments, the magnet allowed the photography of tracks 17 cm long in a field of about 14,000 gauss. The magnet weighed about 11,000 kilos and used a power of 25 kilowatts.


1975 ◽  
Vol 67 (3) ◽  
pp. 417-443 ◽  
Author(s):  
W. V. R. Maekus ◽  
M. R. E. Proctor

Past study of the large-scale consequences of forced small-scale motions in electrically conducting fluids has led to the ‘α-effect’ dynamos. Various linear kinematic aspects of these dynamos have been explored, suggesting their value in the interpretation of observed planetary and stellar magnetic fields. However, large-scale magnetic fields with global boundary conditions can not be force free and in general will cause large-scale motions as they grow. I n this paper the finite amplitude behaviour of global magnetic fields and the large-scale flows induced by them in rotating systems is investigated. In general, viscous and ohmic dissipative mechanisms both play a role in determining the amplitude and structure of the flows and magnetic fields which evolve. In circumstances where ohmic loss is the principal dissipation, it is found that determination of a geo- strophic flow is an essential part of the solution of the basic stability problem. Nonlinear aspects of the theory include flow amplitudes which are independent of the rotation and a total magnetic energy which is directly proportional to the rotation. Constant a is the simplest example exhibiting the various dynamic balances of this stabilizing mechanism for planetary dynamos. A detailed analysis is made for this case to determine the initial equilibrium of fields and flows in a rotating sphere.


2018 ◽  
Vol 480 (2) ◽  
pp. 2200-2205 ◽  
Author(s):  
Jiro Shimoda ◽  
Takuya Akahori ◽  
A Lazarian ◽  
Tsuyoshi Inoue ◽  
Yutaka Fujita

2017 ◽  
Vol 13 (S335) ◽  
pp. 243-249 ◽  
Author(s):  
Huaning Wang ◽  
Yihua Yan ◽  
Han He ◽  
Xin Huang ◽  
Xinghua Dai ◽  
...  

AbstractIt is well known that the energy for solar eruptions comes from magnetic fields in solar active regions. Magnetic energy storage and dissipation are regarded as important physical processes in the solar corona. With incomplete theoretical modeling for eruptions in the solar atmosphere, activity forecasting is mainly supported with statistical models. Solar observations with high temporal and spatial resolution continuously from space well describe the evolution of activities in the solar atmosphere, and combined with three dimensional reconstruction of solar magnetic fields, makes numerical short-term (within hours to days) solar activity forecasting possible. In the current report, we propose the erupting frequency and main attack direction of solar eruptions as new forecasts and present the prospects for numerical short-term solar activity forecasting based on the magnetic topological framework in solar active regions.


2009 ◽  
Vol 5 (H15) ◽  
pp. 251-253
Author(s):  
Vitor de Souza ◽  
Peter L. s Biermman

AbstractIn this paper we briefly discuss the present status of the cosmic ray astrophysics under the light of the new data from the Pierre Auger Observatory. The measured energy spectrum is used to test the scenario of production in nearby radio galaxies. Within this framework the AGN correlation would require that most of the cosmic rays are heavy nuclei and are widely scattered by intergalactic magnetic fields.


2010 ◽  
Vol 6 (S273) ◽  
pp. 333-337 ◽  
Author(s):  
Sanjiv Kumar Tiwari

AbstractIn a force-free magnetic field, there is no interaction of field and the plasma in the surrounding atmosphere i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of many magnetic parameters like magnetic energy, gradient of twist of sunspot magnetic fields (computed from the force-free parameter α), including any kind of extrapolations heavily hinge on the force-free approximation of the photospheric magnetic fields. The force-free magnetic behaviour of the photospheric sunspot fields has been examined by Metcalf et al. (1995) and Moon et al. (2002) ending with inconsistent results. Metcalf et al. (1995) concluded that the photospheric magnetic fields are far from the force-free nature whereas Moon et al. (2002) found the that the photospheric magnetic fields are not so far from the force-free nature as conventionally regarded. The accurate photospheric vector field measurements with high resolution are needed to examine the force-free nature of sunspots. We use high resolution vector magnetograms obtained from the Solar Optical Telescope/Spectro-Polarimeter (SOT/SP) aboard Hinode to inspect the force-free behaviour of the photospheric sunspot magnetic fields. Both the necessary and sufficient conditions for force-freeness are examined by checking global as well as as local nature of sunspot magnetic fields. We find that the sunspot magnetic fields are very close to the force-free approximation, although they are not completely force-free on the photosphere.


1985 ◽  
Vol 107 ◽  
pp. 61-81
Author(s):  
James F. Drake

The current theoretical understanding of the linear and nonlinear evolution of resistive tearing instabilities in sheared magnetic fields is reviewed. The physical mechanisms underlying this instability are emphasized. Some of the problems which are encountered in developing a model of magnetic energy dissipation in coronal loops are discussed and possible solutions are suggested.


Sign in / Sign up

Export Citation Format

Share Document