scholarly journals On the correlation of the highest energy cosmic rays with AGNs

2009 ◽  
Vol 5 (H15) ◽  
pp. 251-253
Author(s):  
Vitor de Souza ◽  
Peter L. s Biermman

AbstractIn this paper we briefly discuss the present status of the cosmic ray astrophysics under the light of the new data from the Pierre Auger Observatory. The measured energy spectrum is used to test the scenario of production in nearby radio galaxies. Within this framework the AGN correlation would require that most of the cosmic rays are heavy nuclei and are widely scattered by intergalactic magnetic fields.

Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 128 ◽  
Author(s):  
Dariusz Góra ◽  

The Pierre Auger Observatory is the world’s largest operating detection system for the observation of ultra high energy cosmic rays (UHECRs), with energies above 10 17 eV. The detector allows detailed measurements of the energy spectrum, mass composition and arrival directions of primary cosmic rays in the energy range above 10 17 eV. The data collected at the Auger Observatory over the last decade show the suppression of the cosmic ray flux at energies above 4 × 10 19 eV. However, it is still unclear if this suppression is caused by the energy limitation of their sources or by the Greisen–Zatsepin–Kuzmin (GZK) cut-off. In such a case, UHECRs would interact with the microwave background (CMB), so that particles traveling long intergalactic distances could not have energies greater than 5 × 10 19 eV. The other puzzle is the origin of UHECRs. Some clues can be drawn from studying the distribution of their arrival directions. The recently observed dipole anisotropy has an orientation that indicates an extragalactic origin of UHECRs. The Auger surface detector array is also sensitive to showers due to ultra high energy neutrinos of all flavors and photons, and recent neutrino and photon limits provided by the Auger Observatory can constrain models of the cosmogenic neutrino production and exotic scenarios of the UHECRs origin, such as the decays of super heavy, non-standard-model particles. In this paper, the recent results on measurements of the energy spectrum, mass composition and arrival directions of cosmic rays, as well as future prospects are presented.


2019 ◽  
Vol 208 ◽  
pp. 08001 ◽  
Author(s):  
Sergio Petrera

In this paper some recent results from the Pierre Auger Collaboration are presented. These are the measurement of the energy spectrum of cosmic rays over a wide range of energies (1017.5 to above 1020 eV), studies of the cosmic-ray mass composition with the fluorescence and surface detector of the Observatory, the observation of a large-scale anisotropy in the arrival direction of cosmic rays above 8 × 1018 eV and indications of anisotropy at intermediate angular scales above 4 × 1019 eV. The astrophysical implications of the spectrum and composition results are also discussed. Finally the progress of the upgrade of the Observatory, AugerPrime is presented.


2019 ◽  
Vol 210 ◽  
pp. 04002
Author(s):  
James H. Matthews ◽  
Anthony R. Bell ◽  
Anabella T. Araudo ◽  
Katherine M. Blundell

The origin of ultrahigh energy cosmic rays (UHECRs) is an open question. In this proceeding, we first review the general physical requirements that a source must meet for acceleration to 10-100 EeV, including the consideration that the shock is not highly relativistic. We show that shocks in the backflows of radio galaxies can meet these requirements. We discuss a model in which giant-lobed radio galaxies such as Centaurus A and Fornax A act as slowly-leaking UHECR reservoirs, with the UHECRs being accelerated during a more powerful past episode. We also show that Centaurus A, Fornax A and other radio galaxies may explain the observed anisotropies in data from the Pierre Auger Observatory, before examining some of the difficulties in associating UHECR anisotropies with astrophysical sources.


2011 ◽  
Vol 20 (supp01) ◽  
pp. 118-131
Author(s):  
◽  
CAROLA DOBRIGKEIT

The Pierre Auger Observatory in Argentina is the largest cosmic ray detector array ever built. Its main goal is to measure cosmic rays of energy above 1018 eV with unprecedented statistics and precision. Although the construction of its baseline design was completed in mid-2008, the Observatory has been taking data continuously since January 2004. The main results obtained with the Pierre Auger Observatory are presented, with emphasis on the energy spectrum and studies of composition and arrival directions of the ultrahigh energy cosmic rays. Features observed in the energy spectrum are discussed. Results about cosmic ray composition inferred from systematic studies of the average depth of shower maximum and its fluctuations are reviewed. Recent results of studies of arrival direction distributions and correlations with nearby extragalactic objects are presented.


Author(s):  
Dariusz Gora

The Pierre Auger Observatory is the world's largest operating detection system for the observation of ultra high energy cosmic rays (UHECRs). The detector allows detailed measurements of their energy spectrum, mass composition and arrival directions of primary cosmic rays in the energy range above $10^{17}$ eV. The data collected at the Observatory over the last decade show the suppression of the cosmic ray flux at energies above $4\times10^{19}$ eV. However, it is still unclear if this suppression is caused by the propagation of cosmic rays or rather by energy limitation of their sources. The other puzzle is the origin of UHECRs. Some clues can be drawn from studying the distribution of their arrival directions. The recently observed dipole anisotropy has an orientation which indicates an extragalactic origin of UHECRs. The Auger surface detector array is also sensitive to showers due to ultra high energy neutrinos of all flavours and photons, and recent neutrino and photon limits provided by the Observatory can constrain models of the cosmogenic neutrino production and exotic scenarios of the UHECRs origin, such as the decays of super heavy particles. In this paper the recent results on measurements of the energy spectrum, mass composition and arrival directions of cosmic rays, and future prospects are presented.


Both the penetrating power of the cosmic rays through material ab­sorbers and their ability to reach the earth in spite of its magnetic field, make it certain that the energy of many of the primary particles must reach at least 10 11 e-volts. However, the energy measurements by Kunze, and by Anderson, using cloud chambers in strong magnetic fields, have extended only to about 5 x 10 9 e-volts. Particles of greater energy were reported, but the curvature of their tracks was too small to be measured with certainty. We have extended these energy measurements to somewhat higher energies, using a large electro-magnet specially built for the purpose and described in Part I. As used in these experiments, the magnet allowed the photography of tracks 17 cm long in a field of about 14,000 gauss. The magnet weighed about 11,000 kilos and used a power of 25 kilowatts.


1970 ◽  
Vol 39 ◽  
pp. 168-183
Author(s):  
E. N. Parker

The topic of this presentation is the origin and dynamical behavior of the magnetic field and cosmic-ray gas in the disk of the Galaxy. In the space available I can do no more than mention the ideas that have been developed, with but little explanation and discussion. To make up for this inadequacy I have tried to give a complete list of references in the written text, so that the interested reader can pursue the points in depth (in particular see the review articles Parker, 1968a, 1969a, 1970). My purpose here is twofold, to outline for you the calculations and ideas that have developed thus far, and to indicate the uncertainties that remain. The basic ideas are sound, I think, but, when we come to the details, there are so many theoretical alternatives that need yet to be explored and so much that is not yet made clear by observations.


2011 ◽  
Vol 20 (supp02) ◽  
pp. 50-56
Author(s):  
◽  
PETER SCHIFFER

The Pierre Auger Observatory is the world's largest experiment for the measurement of ultra-high energy cosmic rays (UHECRs). These UHECRs are assumed to be to be charged particles, and thus are deflected in cosmic magnetic fields. Recent results of the Pierre Auger Observatory addressing the complex of energy ordering of the UHECRs arrival directions are reviewed in this contribution. So far no significant energy ordering has been observed.


2012 ◽  
Vol 18 ◽  
pp. 221-229
Author(s):  
◽  
J. R. T. DE MELLO NETO

We present the status and the recent measurements from the Pierre Auger Observatory. The energy spectrum is described and its features discussed. We report searches for anisotropy of cosmic rays arrival directions in large scales and through correlation with catalogues of celestial objects. The measurement of the cross section proton-air is discussed. Finally, the mass composition is addressed with the measurements of the variation of the depth of shower maximum with energy and with the muon density at ground.


1971 ◽  
Vol 2 ◽  
pp. 740-756
Author(s):  
Maurice M. Shapiro

The ‘Galactic’ cosmic rays impinging on the Earth come from afar over tortuous paths, traveling for millions of years. These particles are the only known samples of matter that reach us from regions of space beyond the solar system. Their chemical and isotopic composition and their energy spectra provide clues to the nature of cosmic-ray sources, the properties of interstellar space, and the dynamics of the Galaxy. Various processes in high-energy astrophysics could be illuminated by a more complete understanding of the arriving cosmic rays, including the electrons and gamma rays.En route, some of theprimordialcosmic-ray nuclei have been transformed by collision with interstellar matter, and the composition is substantially modified by these collisions. A dramatic consequence of the transformations is the presence in the arriving ‘beam’ of considerable fluxes of purely secondary elements (Li, Be, B), i.e., species that are, in all probability, essentially absent at the sources. We shall here discuss mainly the composition of the arriving ‘heavy’ nuclei -those heavier than helium - and what they teach us about thesourcecomposition, the galactic confinement of the particles, their path lengths, and their transit times.


Sign in / Sign up

Export Citation Format

Share Document