Cell-type-specific regulation of RNA polymerase I transcription: a new frontier

BioEssays ◽  
2006 ◽  
Vol 28 (7) ◽  
pp. 719-725 ◽  
Author(s):  
Hung Tseng
1993 ◽  
Vol 13 (7) ◽  
pp. 4029-4038
Author(s):  
B M Herschbach ◽  
A D Johnson

The alpha 2 protein of the yeast Saccharomyces cerevisiae normally represses a set of cell-type-specific genes (the a-specific genes) that are transcribed by RNA polymerase II. In this study, we determined whether alpha 2 can affect transcription by other RNA polymerases. We find that alpha 2 can repress transcription by RNA polymerase I but not by RNA polymerase III. Additional experiments indicate that alpha 2 represses RNA polymerase I transcription through the same pathway that it uses to repress RNA polymerase II transcription. These results implicate conserved components of the transcription machinery as mediators of alpha 2 repression and exclude several alternate models.


1993 ◽  
Vol 13 (7) ◽  
pp. 4029-4038 ◽  
Author(s):  
B M Herschbach ◽  
A D Johnson

The alpha 2 protein of the yeast Saccharomyces cerevisiae normally represses a set of cell-type-specific genes (the a-specific genes) that are transcribed by RNA polymerase II. In this study, we determined whether alpha 2 can affect transcription by other RNA polymerases. We find that alpha 2 can repress transcription by RNA polymerase I but not by RNA polymerase III. Additional experiments indicate that alpha 2 represses RNA polymerase I transcription through the same pathway that it uses to repress RNA polymerase II transcription. These results implicate conserved components of the transcription machinery as mediators of alpha 2 repression and exclude several alternate models.


2016 ◽  
Vol 94 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Adam Scheidegger ◽  
Sergei Nechaev

The RNA polymerase II (Pol II) transcribes all mRNA genes in eukaryotes and is among the most highly regulated enzymes in the cell. The classic model of mRNA gene regulation involves recruitment of the RNA polymerase to gene promoters in response to environmental signals. Higher eukaryotes have an additional ability to generate multiple cell types. This extra level of regulation enables each cell to interpret the same genome by committing to one of the many possible transcription programs and executing it in a precise and robust manner. Whereas multiple mechanisms are implicated in cell type-specific transcriptional regulation, how one genome can give rise to distinct transcriptional programs and what mechanisms activate and maintain the appropriate program in each cell remains unclear. This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome. We highlight aspects of promoter-proximal Pol II pausing, including its interplay with epigenetic mechanisms, that may enable cell type-specific regulation, and emphasize some of the pertinent questions that remain unanswered and open for investigation.


Sign in / Sign up

Export Citation Format

Share Document