Detailed anatomy of the abducens nerve in the lateral rectus muscle

2017 ◽  
Vol 30 (7) ◽  
pp. 873-877 ◽  
Author(s):  
Yong Seok Nam ◽  
In-Beom Kim ◽  
Sun Young Shin
2018 ◽  
Vol 43 (6) ◽  
pp. 689-695 ◽  
Author(s):  
Hyun Jin Shin ◽  
Shin-Hyo Lee ◽  
Kang-Jae Shin ◽  
Ki-Seok Koh ◽  
Wu-Chul Song

Neurosurgery ◽  
2003 ◽  
Vol 52 (3) ◽  
pp. 645-652 ◽  
Author(s):  
M. Faik Ozveren ◽  
Bulent Sam ◽  
Ismail Akdemir ◽  
Alpay Alkan ◽  
Ibrahim Tekdemir ◽  
...  

Abstract OBJECTIVE During its course between the brainstem and the lateral rectus muscle, the abducens nerve usually travels forward as a single trunk, but it is not uncommon for the nerve to split into two branches. The objective of this study was to establish the incidence and the clinical importance of the duplication of the nerve. METHODS The study was performed on 100 sides of 50 autopsy materials. In 10 of 11 cases of duplicated abducens nerve, colored latex was injected into the common carotid arteries and the internal jugular veins. The remaining case was used for histological examination. RESULTS Four of 50 cases had duplicated abducens nerve bilaterally. In seven cases, the duplicated abducens nerve was unilateral. In 9 of these 15 specimens, the abducens nerve emerged from the brainstem as a single trunk, entered the subarachnoid space, split into two branches, merged again in the cavernous sinus, and innervated the lateral rectus muscle as a single trunk. In six specimens, conversely, the abducens nerve exited the pontomedullary sulcus as two separate radices but joined in the cavernous sinus to innervate the lateral rectus muscle. In 13 specimens, both branches of the nerve passed beneath the petrosphenoidal ligament. In two specimens, one of the branches passed under the ligament and the other passed over it. In one of these last two specimens, one branch passed over the petrosphenoidal ligament and the other through a bony canal formed by the petrous apex and the superolateral border of the clivus. In all of the specimens, both branches were wrapped by two layers: an inner layer made up of the arachnoid membrane and an outer layer composed of the dura during its course between their dural openings and the lateral wall of the cavernous segment of the internal carotid artery. This finding was also confirmed by histological examination in one specimen. CONCLUSION Double abducens nerve is not a rare variation. Keeping such variations in mind could spare us from injuring the VIth cranial nerve during cranial base operations and transvenous endovascular interventions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qing Xia ◽  
Xiangtian Ling ◽  
Zhonghao Wang ◽  
Tao Shen ◽  
Minghao Chen ◽  
...  

Abstract Purpose and background Recently, we found that maximal medial rectus recession and lateral rectus resection in patients with complete lateral rectus paralysis resulted in a partial restoration of abduction. In an attempt to understand some of the mechanisms involved with this effect we examined gene expression profiles of lateral recti from these patients, with our focus being directed to genes related to myogenesis. Materials and methods Lateral recti resected from patients with complete lateral rectus paralysis and those from concomitant esotropia (controls) were collected. Differences in gene expression profiles between these two groups were examined using microarray analysis and quantitative Reverse-transcription PCR (qRT-PCR). Results A total of 3056 differentially expressed genes (DEGs) were identified between these two groups. Within the paralytic esotropia group, 2081 genes were up-regulated and 975 down-regulated. The results of RT-PCR revealed that PAX7, MYOG, PITX1, SIX1 and SIX4 showed higher levels of expression, while that of MYOD a lower level of expression within the paralytic esotropia group as compared with that in the control group (p < 0.05). Conclusion The decreased expression of MYOD in the paralytic esotropia group suggested that extraocular muscle satellite cell (EOMSCs) differentiation processes were inhibited. Whereas the high expression levels of PAX7, SIX1/4 and MYOG, suggested that the EOMSCs were showing an effective potential for differentiation. The stimulation resulting from muscle surgery may induce EOMSCs to differentiate and thus restore abduction function.


1991 ◽  
Vol 544 (2) ◽  
pp. 260-268 ◽  
Author(s):  
R.R. de la Cruz ◽  
R. Baker ◽  
J.M. Delgado-García

Sign in / Sign up

Export Citation Format

Share Document