scholarly journals OSW‐1 inhibits tumor growth and metastasis by NFATc2 on triple‐negative breast cancer

2020 ◽  
Vol 9 (15) ◽  
pp. 5558-5569
Author(s):  
Xiaorong Ding ◽  
Yumei Li ◽  
Jun Li ◽  
Yongmei Yin
2019 ◽  
Vol 145 (10) ◽  
pp. 2767-2780 ◽  
Author(s):  
Zhishan Wang ◽  
Yunfei Li ◽  
Yajuan Xiao ◽  
Hsuan‐Pei Lin ◽  
Ping Yang ◽  
...  

2020 ◽  
Author(s):  
Sadiya Parveen ◽  
Sumit Siddharth ◽  
Laurene S Cheung ◽  
Alok Kumar ◽  
John R Murphy ◽  
...  

ABSTRACTIn many solid tumors including triple-negative breast cancer (TNBC), IL-4 receptor (IL-4R) upregulation has been shown to promote cancer cell proliferation, apoptotic resistance, metastatic potential and a Th2 response in the tumor microenvironment (TME). Immunosuppressive cells in the TME including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) also express the IL4-R. We hypothesized that selective depletion of IL4-R bearing cells in TNBC may have dual cytotoxic and immunotherapeutic benefit. To selectively target IL-4R+ cells, we genetically constructed, expressed and purified DABIL-4, a fusion protein toxin consisting of the catalytic and translocation domains of diphtheria toxin fused to murine IL-4. We found that DABIL-4 has potent and specific cytotoxic activity against TNBC cells in vitro. In murine TNBC models, DABIL-4 significantly reduced tumor growth, splenomegaly and lung metastases, and this was associated with reductions in MDSC, TAM and regulatory T-cells (Tregs) populations with a concomitant increase in the proportion of IFNγ+ CD8 T-cells. The anti-tumor activity of DABIL-4 was absent in IL-4R KO mice directly implicating IL-4R directed killing as the mechanism of anti-tumor activity. Moreover, NanoString analysis of DABIL-4 treated TNBC tumors revealed marked decline in mRNA transcripts that promote tumorigenesis and metastasis. Our findings demonstrate that DABIL-4 is a potent targeted antitumor agent which depletes both IL-4R bearing tumor cells as well as immunosuppressive cell populations in the TME.STATEMENT OF SIGNIFICANCEIn solid tumors like breast cancer, Interleukin-4 receptor (IL-4R) expression in the tumor microenvironment aids tumor growth and metastasis. IL-4R expression upon host immune cells further dampens antitumor immunity. In this study, we have genetically constructed a fusion protein toxin, DABIL-4, composed of the catalytic and translocation domains of diphtheria toxin and murine IL-4. DABIL-4 showed specific cytotoxicity against triple-negative breast cancer (TNBC) cells in vitro. DABIL-4 also markedly inhibited TNBC tumor growth and metastasis in vivo. The primary activity of DABIL-4 was found to be depletion of IL-4R+ immune cells in combination with direct elimination of tumor cells. In conclusion, DABIL-4 targeting of both tumor and immunosuppressive host cells is a versatile and effective treatment strategy for TNBC.


2019 ◽  
Vol 41 (3) ◽  
pp. 313-325 ◽  
Author(s):  
David Peeney ◽  
Sandra M Jensen ◽  
Nadia P Castro ◽  
Sarvesh Kumar ◽  
Silvia Noonan ◽  
...  

Abstract Metastasis is the primary cause of treatment failures and mortality in most cancers. Triple-negative breast cancer (TNBC) is refractory to treatment and rapidly progresses to disseminated disease. We utilized an orthotopic mouse model that molecularly and phenotypically resembles human TNBC to study the effects of exogenous, daily tissue inhibitor of metalloproteinase-2 (TIMP-2) treatment on tumor growth and metastasis. Our results demonstrated that TIMP-2 treatment maximally suppressed primary tumor growth by ~36–50% and pulmonary metastasis by >92%. Immunostaining assays confirmed disruption of the epithelial to mesenchymal transition (EMT) and promotion of vascular integrity in primary tumor tissues. Immunostaining and RNA sequencing analysis of lung tissue lysates from tumor-bearing mice identified significant changes associated with metastatic colony formation. Specifically, TIMP-2 treatment disrupts periostin localization and critical cell-signaling pathways, including canonical Wnt signaling involved in EMT, as well as PI3K signaling, which modulates proliferative and metastatic behavior through p27 phosphorylation/localization. In conclusion, our study provides evidence in support of a role for TIMP-2 in suppression of triple-negative breast cancer growth and metastasis through modulation of the epithelial to mesenchymal transition, vascular normalization, and signaling pathways associated with metastatic outgrowth. Our findings suggest that TIMP-2, a constituent of the extracellular matrix in normal tissues, may have both direct and systemic antitumor and metastasis suppressor effects, suggesting potential utility in the clinical management of breast cancer progression.


2018 ◽  
Vol 45 (2) ◽  
pp. 795-807 ◽  
Author(s):  
Sangmin Kim ◽  
Jeongmin Lee ◽  
Daeun You ◽  
Yisun Jeong ◽  
Myeongjin Jeon ◽  
...  

Background/Aims: Transforming growth factor-beta proteins (TGF-βs) are multifunctional growth factors and powerful modulators of the epithelial-mesenchymal transition (EMT) in a variety of cancer types including breast and lung cancer cells. Here, we demonstrated the inhibitory effect of berberine (BBR) on tumor growth and metastasis of triple negative breast cancer (TNBC) cells via suppression of TGF-β1 expression. Methods: The levels of mRNA expression were analyzed by real-time PCR. The levels of MMP-2, MMP-9 and TGF-β1 protein expression were analyzed by zymography and confocal microscopy, respectively. Cell migration was analyzed by wound healing assay. Tumorigenicity of TNBC cells such as tumor growth and metastasis was analyzed using xenograft models. Results: In a clinical data set, aberrant TGF-β1 expression was associated with poor prognosis of breast cancer patients. Our in vitro results using TNBC cells showed that the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 and the capacity for cell migration were increased by TGF-β1 treatment. In contrast, basal levels of MMP-2 and MMP-9 were suppressed by a specific TGF-β receptor I inhibitor, SB431542. In addition, TGF-β1–induced MMP-2 and MMP-9 expression and cell migration were decreased by SB431542. Interestingly, we showed for the first time that BBR decreased the level of TGF-β1, but not TGF-β2, in TNBC cells. Furthermore, BBR significantly decreased the level of MMP-2 expression as well as the capacity for cell migration in TNBC cells. Finally, we examined the effect of BBR on in vivo tumor growth and lung metastasis in MDA-MB231 and 4T1 breast cancer xenograft models and showed that both were significantly decreased following BBR treatment. Conclusion: BBR suppresses tumorigenicity of TNBC cells through inhibition of TGF-β1 expression. Therefore, we demonstrate that BBR could be a promising drug for treatment of TNBC.


Sign in / Sign up

Export Citation Format

Share Document