chromatin regulator
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 42)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jibo Zhang ◽  
Aakanksha Gundu ◽  
Brian D. Strahl

How transcription programs rapidly adjust to changing metabolic and cellular cues remains poorly defined. Here, we reveal a function for the Yaf9 component of the SWR1-C and NuA4 chromatin regulatory complexes in maintaining timely transcription of metabolic genes across the yeast metabolic cycle (YMC). By reading histone acetylation during the oxidative and respiratory phase of the YMC, Yaf9 recruits SWR1-C and NuA4 complexes to deposit H2A.Z and acetylate H4, respectively. Increased H2A.Z and H4 acetylation during the oxidative phase promotes transcriptional initiation and chromatin machinery occupancy and is associated with reduced RNA polymerase II levels at genes—a pattern reversed during transition from oxidative to reductive metabolism. Prevention of Yaf9-H3 acetyl reading disrupted this pattern of transcriptional and chromatin regulator recruitment and impaired the timely transcription of metabolic genes. Together, these findings reveal that Yaf9 contributes to a dynamic chromatin and transcription initiation factor signature that is necessary for the proper regulation of metabolic gene transcription during the YMC. They also suggest that unique regulatory mechanisms of transcription exist at distinct metabolic states.


2021 ◽  
Author(s):  
Marc A.J. Morgan ◽  
Irina K. Popova ◽  
Anup Vaidya ◽  
Jonathan M. Burg ◽  
Matthew R. Marunde ◽  
...  

Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.


2021 ◽  
Author(s):  
Sarah Lensch ◽  
Michael H. Herschl ◽  
Connor H. Ludwig ◽  
Joydeb Sinha ◽  
Michaela M. Hinks ◽  
...  

In mammalian cells genes that are in close proximity are coupled transcriptionally: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also lead to downstream gene silencing, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. We propose a new model of multi-gene regulation, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi2-vi3
Author(s):  
Prit Benny Malgulwar ◽  
Carla Danussi ◽  
Anand Singh ◽  
Kasthuri Kannan ◽  
Kunal Rai ◽  
...  

Abstract Loss of ATRX (Alpha Thalassemia/Mental Retardation Syndrome X, a member of SWI/SNF family chromatin regulator is altered in diffuse gliomas and defines molecular subtypes with aggressive behavior. Mechanistically, ATRX regulates incorporation of histone H3.3 into chromatin sites across the genome, maintains alternative lengthening of telomeres and establishes genomic distribution of polycomb responsive genes. We have recently reported Atrx deficiency induces glioma oncogenic features via widespread alterations in chromatin accessibility using mouse Neural Progenitor Cells (mNPCs- Tp53 -/-,Atrx -/-). Surprisingly, Atrx was found to be associated with transcription start site and enhancer regions, suggesting their strong association with epigenome architecture. In this background, we have recently performed ChIP-seq for histone marks that define active transcription, enhancers, repressors and gene bodies and Cohesion molecules on Atrx intact and deficient mNPCs. Our integrated analysis reports depletion of H3K9me3 loci’s with enrichment of H3K27me3 marks that coincidently enriched with Atrx binding sites and Lamina-Associated Domains (LADs). GSEA confirmed that the genes corresponding to “newly formed LADs” in mNPC-to-astrocyte differentiation are significantly enriched for genes down-regulated in Atrx deficient mNPCs and belongs to Gene Ontology categories such as cell cycle, chromosome organization and DNA damage. Alternatively, genes corresponding to decreased LAD association are enriched for up-regulated genes in Atrx deficient mNPCs and for regulation of differentiation, adhesion and cell death. Additionally, whole-genome bisulphite sequencing further demonstrated loss of methylation marks at H3K9me3 sites in Atrx deficient mNPCs, suggesting perturbations of heterochromatin regions leading to activation of canonical signals that define glioma phenotype and disease-state. To summarize, our data establishes tangible links between Atrx deficiency and dysregulated chromatin and heterochromatin architecture in gliomas and suggests the role of Atrx in establishing global chromatin features and transcriptional networks. Further, our data unravel novel therapeutic molecules/pathways for engineering potential.


Blood ◽  
2021 ◽  
Author(s):  
Xiaona You ◽  
Fabao Liu ◽  
Moritz Binder ◽  
Alexis Vedder ◽  
Terra L Lasho ◽  
...  

Mutations in chromatin regulator ASXL1 are frequently identified in myeloid malignancies, in particular ~40% in chronic myelomonocytic leukemia (CMML). ASXL1 mutations associate with poor prognosis in CMML and significantly co-occur with NRAS mutations. Here, we show that concurrent ASXL1 and NRAS mutations defined a population of CMML patients with shorter leukemia-free survival than those with ASXL1 mutation only. Corroborating this human data, Asxl1-/- accelerated CMML progression and promoted CMML transformation to acute myeloid leukemia (AML) in NrasG12D/+ mice. NrasG12D/+; Asxl1-/- (NA) leukemia cells displayed hyperactivation of MEK/ERK signaling, increased global level of H3K27ac, and Flt3 upregulation. Moreover, we find that NA-AML cells overexpressed all the major inhibitory immune checkpoint ligands, PD-L1/L2, CD155, and CD80/86. Among them, overexpression of PD-L1 and CD86 correlated with upregulation of AP-1 transcription factors (TFs) in NA-AML cells. An AP-1 inhibitor or shRNAs against AP-1 TF Jun decreased PD-L1 and CD86 expression in NA-AML cells. Once NA-AML cells were transplanted into syngeneic recipients, NA-derived T cells were not detectable. Host-derived wildtype T cells overexpressed PD-1 and TIGIT receptors, leading to a predominant exhausted T cell phenotype. Combined inhibition of MEK and BET led to downregulation of Flt3 and AP-1 expression, partial restoration of the immune microenvironment, enhancement of CD8+ T cell cytotoxicity, and prolonged survival in NA-AML mice. Our study suggests that combined targeted therapy and immunotherapy may be beneficial for treating secondary AML with concurrent ASXL1 and NRAS mutations.


2021 ◽  
Author(s):  
Hongjia Zhu ◽  
Masako Narita ◽  
Jerelle A Joseph ◽  
Georg Krainer ◽  
William E Arter ◽  
...  

The protein high mobility group A1 (HMGA1) is an important regulator of chromatin organization and function. However, the mechanisms by which it exerts its biological function are not fully understood. Here, we report that the HMGA isoform, HMGA1a, nucleates into foci that display liquid-like properties in the nucleus, and that the protein readily undergoes phase separation to form liquid condensates in vitro. By bringing together machine-learning modelling, cellular and biophysical experiments and multiscale simulations, we demonstrate that phase separation of HMGA1a is critically promoted by protein-DNA interactions, and has the potential to be modulated by post-transcriptional effects such as phosphorylation. We further show that the intrinsically disordered C-terminal tail of HMGA1a significantly contributes to its phase separation through cation-pi; and electrostatic interactions. Our work sheds light on HMGA1 phase separation as an emergent biophysical factor in regulating chromatin structure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Cimino ◽  
Debra Rimmington ◽  
Y. C. Loraine Tung ◽  
Katherine Lawler ◽  
Pierre Larraufie ◽  
...  

AbstractNeuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1291
Author(s):  
Gee-Way Lin ◽  
Yung-Chih Lai ◽  
Ya-Chen Liang ◽  
Randall B. Widelitz ◽  
Ping Wu ◽  
...  

The epidermal differentiation complex (EDC) encodes a group of unique proteins expressed in late epidermal differentiation. The EDC gave integuments new physicochemical properties and is critical in evolution. Recently, we showed β-keratins, members of the EDC, undergo gene cluster switching with overexpression of SATB2 (Special AT-rich binding protein-2), considered a chromatin regulator. We wondered whether this unique regulatory mechanism is specific to β-keratins or may be derived from and common to EDC members. Here we explore (1) the systematic expression patterns of non-β-keratin EDC genes and their preferential expression in different skin appendages during development, (2) whether the expression of non-β-keratin EDC sub-clusters are also regulated in clusters by SATB2. We analyzed bulk RNA-seq and ChIP-seq data and also evaluated the disrupted expression patterns caused by overexpressing SATB2. The results show that the expression of whole EDDA and EDQM sub-clusters are possibly mediated by enhancers in E14-feathers. Overexpressing SATB2 down-regulates the enriched EDCRP sub-cluster in feathers and the EDCH sub-cluster in beaks. These results reveal the potential of complex epigenetic regulation activities within the avian EDC, implying transcriptional regulation of EDC members acting at the gene and/or gene cluster level in a temporal and skin regional-specific fashion, which may contribute to the evolution of diverse avian integuments.


2021 ◽  
Vol 7 (20) ◽  
pp. eabf2229
Author(s):  
Bastian Stielow ◽  
Yuqiao Zhou ◽  
Yinghua Cao ◽  
Clara Simon ◽  
Hans-Martin Pogoda ◽  
...  

CpG islands (CGIs) are key regulatory DNA elements at most promoters, but how they influence the chromatin status and transcription remains elusive. Here, we identify and characterize SAMD1 (SAM domain-containing protein 1) as an unmethylated CGI-binding protein. SAMD1 has an atypical winged-helix domain that directly recognizes unmethylated CpG-containing DNA via simultaneous interactions with both the major and the minor groove. The SAM domain interacts with L3MBTL3, but it can also homopolymerize into a closed pentameric ring. At a genome-wide level, SAMD1 localizes to H3K4me3-decorated CGIs, where it acts as a repressor. SAMD1 tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs, thereby providing a mechanism for SAMD1-mediated transcriptional repression. The absence of SAMD1 impairs ES cell differentiation processes, leading to misregulation of key biological pathways. Together, our work establishes SAMD1 as a newly identified chromatin regulator acting at unmethylated CGIs.


Author(s):  
Daniela Marta Roth ◽  
Pranidhi Baddam ◽  
Haiming Lin ◽  
Marta Vidal-García ◽  
Jose David Aponte ◽  
...  

Epigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 (ANKRD11) is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. ANKRD11 gene variants, or microdeletions of the 16q24.3 chromosomal region encompassing the ANKRD11 gene, cause KBG syndrome, a rare autosomal dominant congenital disorder with variable neurodevelopmental and craniofacial involvement. Craniofacial abnormalities include a distinct facial gestalt, delayed bone age, tooth abnormalities, delayed fontanelle closure, and frequently cleft or submucosal palate. Despite this, the dramatic phenotype and precise role of ANKRD11 in embryonic craniofacial development remain unexplored. Quantitative analysis of 3D images of KBG syndromic subjects shows an overall reduction in the size of the middle and lower face. Here, we report that mice with heterozygous deletion of Ankrd11 in neural crest cells (Ankrd11nchet) display a mild midfacial hypoplasia including reduced midfacial width and a persistent open fontanelle, both of which mirror KBG syndrome patient facial phenotypes. Mice with a homozygous Ankrd11 deletion in neural crest cells (Ankrd11ncko) die at birth. They show increased severity of several clinical manifestations described for KBG syndrome, such as cleft palate, retrognathia, midfacial hypoplasia, and reduced calvarial growth. At E14.5, Ankrd11 expression in the craniofacial complex is closely associated with developing bony structures, while expression at birth is markedly decreased. Conditional deletion of Ankrd11 leads to a reduction in ossification of midfacial bones, with several ossification centers failing to expand and/or fuse. Intramembranous bones show features of delayed maturation, with bone remodeling severely curtailed at birth. Palatal shelves remain hypoplastic at all developmental stages, with a local reduction in proliferation at E13.5. Our study identifies Ankrd11 as a critical regulator of intramembranous ossification and palate development and suggests that Ankrd11nchet and Ankrd11ncko mice may serve as pre-clinical models for KBG syndrome in humans.


Sign in / Sign up

Export Citation Format

Share Document