Influences of the Anions on the Interaction Energy between Water and Ionic Liquids

Author(s):  
Chaolun Zheng ◽  
Ziyang Shen ◽  
Jian Zhou ◽  
Yong Pei ◽  
Bao Yang
2011 ◽  
Vol 27 (09) ◽  
pp. 2059-2064 ◽  
Author(s):  
LI Wei ◽  
◽  
QI Chuan-Song ◽  
WU Xin-Min ◽  
RONG Hua ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2896 ◽  
Author(s):  
Fang He ◽  
Bo Wang ◽  
Jia Zhao ◽  
Xiaopeng Zhao ◽  
Jianbo Yin

Polymerized ionic liquids (PILs) show potential to be used as new water-free polyelectrolyte-based electrorheological (ER) material. To direct ER material design at the molecular level, unveiling structure-property relationships is essential. While a few studies compare the mobile ions in PILs there is still a limited understanding of how the structure of tethered counterions on backbone influences ER property. In this study, three PILs with same mobile anions but different tethered countercations (e.g., poly(dimethyldiallylammonium) P[DADMA]+, poly(benzylethyl) trimethylammonium P[VBTMA]+, and poly(1-ethyl-4-vinylimidazolium hexafluorophosphate) P[C2VIm]+) are prepared and the influence of tethered countercations on the ER property of PILs is investigated. It shows that among these PILs, P[DADMA]+ PILs have the strongest ER property and P[C2VIm]+ PILs have the weakest one. By combining dielectric spectra analysis with DFT calculation and activation energy measurement, it can clarify that the influence of tethered counterions on ER property is mainly associated with ion-pair interaction energy that is affecting ionic conductivity and interfacial polarization induced by ion motion. P[DADMA]+ has the smallest ion-pair interaction energy with mobile ions, which can result in the highest ionic conductivity and the fastest interfacial polarization rate for its strongest ER property.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5526
Author(s):  
Iván González-Veloso ◽  
Nádia M. Figueiredo ◽  
M. Natália D. S. Cordeiro

This work aims at unravelling the interactions in magnetic ionic liquids (MILs) by applying Symmetry-Adapted Perturbation Theory (SAPT) calculations, as well as based on those to set-up a polarisable force field model for these liquids. The targeted MILs comprise two different cations, namely: 1-butyl-3-methylimidazolium ([Bmim]+) and 1-ethyl-3-methylimidazolium ([Emim]+), along with several metal halides anions such as [FeCl4]−, [FeBr4]−, [ZnCl3]− and [SnCl4]2− To begin with, DFT geometry optimisations of such MILs were performed, which in turn revealed that the metallic anions prefer to stay close to the region of the carbon atom between the nitrogen atoms in the imidazolium fragment. Then, a SAPT study was carried out to find the optimal separation of the monomers and the different contributions for their interaction energy. It was found that the main contribution to the interaction energy is the electrostatic interaction component, followed by the dispersion one in most of the cases. The SAPT results were compared with those obtained by employing the local energy decomposition scheme based on the DLPNO-CCSD(T) method, the latter showing slightly lower values for the interaction energy as well as an increase of the distance between the minima centres of mass. Finally, the calculated SAPT interaction energies were found to correlate well with the melting points experimentally measured for these MILs.


2011 ◽  
pp. 110923034559006
Author(s):  
Arnd Garsuch ◽  
D. Michael Badine ◽  
Klaus Leitner ◽  
Luiz H. S. Gasparotto ◽  
Natalia Borisenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document