High-Level Ab Initio Calculations of Intermolecular Interactions: Heavy Main-Group Element π-Interactions

2018 ◽  
Vol 24 (40) ◽  
pp. 10238-10245 ◽  
Author(s):  
Małgorzata Krasowska ◽  
Wolfgang B. Schneider ◽  
Michael Mehring ◽  
Alexander A. Auer
2001 ◽  
Vol 11 (6) ◽  
pp. 213-214 ◽  
Author(s):  
Ruslan M. Minyaev ◽  
Tatyana N. Gribanova ◽  
Andrei G. Starikov ◽  
Vladimir I. Minkin

2019 ◽  
Author(s):  
Oriol Planas ◽  
Feng Wang ◽  
Markus Leutzsch ◽  
Josep Cornella

The ability of bismuth to maneuver between different oxidation states in a catalytic redox cycle, mimicking the canonical organometallic steps associated to a transition metal, is an elusive and unprecedented approach in the field of homogeneous catalysis. Herein we present a catalytic protocol based on bismuth, a benign and sustainable main-group element, capable of performing every organometallic step in the context of oxidative fluorination of boron compounds; a territory reserved to transition metals. A rational ligand design featuring hypervalent coordination together with a mechanistic understanding of the fundamental steps, permitted a catalytic fluorination protocol based on a Bi(III)/Bi(V) redox couple, which represents a unique example where a main-group element is capable of outperforming its transition metal counterparts.<br>A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.<br>


2006 ◽  
Vol 59 (3) ◽  
pp. 211 ◽  
Author(s):  
Leonid B. Krivdin ◽  
Lyudmila I. Larina ◽  
Kirill A. Chernyshev ◽  
Natalia A. Keiko

A configurational assignment of the isomeric methylglyoxal bisdimethylhydrazones derived from the 2-ethoxypropenal precursor has been performed based on experimental measurements and high-level ab initio calculations of 1J(C,C) and 1J(C,H) couplings. The results reveal the marked stereochemical dependence upon the orientation of the lone pairs of both nitrogen atoms in different isomers. Methylglyoxal bisdimethylhydrazone is shown to exist in a mixture of the EE and ZE isomers (ca. 75:25), both of which adopt predominant s-trans conformations with minor (up to 8°) out-of-plane deviations.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 286
Author(s):  
Edward R.T. Tiekink

A search of the Cambridge Structural Database was conducted for pyridyl-substituted dithiocarbamate ligands. This entailed molecules containing both an NCS2− residue and pyridyl group(s), in order to study their complexation behavior in their transition metal and main group element crystals, i.e., d- and p-block elements. In all, 73 different structures were identified with 30 distinct dithiocarbamate ligands. As a general observation, the structures of the transition metal dithiocarbamates resembled those of their non-pyridyl derivatives, there being no role for the pyridyl-nitrogen atom in coordination. While the same is true for many main group element dithiocarbamates, a far greater role for coordination of the pyridyl-nitrogen atoms was evident, in particular, for the heavier elements. The participation of pyridyl-nitrogen in coordination often leads to the formation of dimeric aggregates but also one-dimensional chains and two-dimensional arrays. Capricious behaviour in closely related species that adopted very different architectures is noted. Sometimes different molecules comprising the asymmetric-unit of a crystal behave differently. The foregoing suggests this to be an area in early development and is a fertile avenue for systematic research for probing further crystallization outcomes and for the rational generation of supramolecular architectures.


Sign in / Sign up

Export Citation Format

Share Document