ChemInform Abstract: THE MIGRATORY APTITUDE OF THE SEC-BUTYL GROUP IN A CATIONIC REARRANGEMENT

1979 ◽  
Vol 10 (49) ◽  
Author(s):  
J. D. PALMER ◽  
A. J. WARING
2015 ◽  
Vol 27 (21) ◽  
pp. 7388-7394 ◽  
Author(s):  
Jing Huang ◽  
Xu Zhou ◽  
Alexandros Lamprou ◽  
Fernando Maya ◽  
Frantisek Svec ◽  
...  

2009 ◽  
Vol 509 (1) ◽  
pp. 96/[838]-107/[849] ◽  
Author(s):  
Song Hak Kim ◽  
Do Kyung Lee ◽  
Chun Keun Jang ◽  
Seung Hwan Byun ◽  
Jae-Yun Jaung

2002 ◽  
Vol 80 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Takehiko Yamato ◽  
Koji Tsuchihashi ◽  
Noriko Nakamura ◽  
Mai Hirahara ◽  
Hirohisa Tsuzuki

The two tert-butyl groups of anti-6,15-di-tert-butyl-9,18-dimethoxy[3.3]metacyclophane (anti-4) are both ipso-nitrated even under mild reaction conditions such as copper(II) nitrate in an acetic anhydride solution because of the decreased deactivation of the second aromatic ring by the introduced nitro group. On the other hand, anti-5,13-di-tert-butyl-8,16-dimethoxy[2.2]metacyclophane (anti-1) undergoes replacement of only one tert-butyl group under the same reaction conditions. The higher yields of the twofold ipso-nitration product anti-7 were obtained in nitration of anti-4 with fuming nitric acid or mixed acid (HNO3–H2SO4). Thus, the number of ipso-nitrations at the tert-butyl groups of anti-4 was strongly affected by the reactivity of the nitration reagent. Nitration of the corresponding syn-conformer syn-4 with copper(II) nitrate in an acetic anhydride solution, however, led only to the recovery of the starting compound. The presently developed procedure was further applied to the direct removal of the tert-butyl group by electrophilic substitution of the larger-sized ring macrocyclic metacyclophanes, cone- and partial-cone-tri-tert-butyl[3.3.3]metacyclophanes 11.Key words: [3n]metacyclophanes, conformation, ipso-nitration, through-space electronic interaction, crystal structure.


1965 ◽  
Vol 30 (12) ◽  
pp. 4375-4377 ◽  
Author(s):  
Donald D. Roberts
Keyword(s):  

2021 ◽  
Vol 21 (9) ◽  
pp. 4654-4659
Author(s):  
Seunghyun Kim ◽  
Seokwoo Kang ◽  
Jongwook Park

New green emitter is designed and synthesized by selecting anthracene having high photoluminescence quantum yield (PLQY) and diphenylamine side group substituted methyl and t-butyl group: N9,N10-bis(5-(tert-butyl)-2-methylphenyl)-N9,N10-bis(2,4-dimethylphenyl)anthracene-9,10-diamine (3Me-1Bu-TPADA). Photophysical, electrochemical, and electroluminescent (EL) properties of 3Me-1Bu-TPADA were investigated. The maximum photoluminescence (PL) emission wavelengths of 3Me-1Bu-TPADA in solution and in a film were 528 nm and 531 nm, respectively. 3Me-1Bu-TPADA has excellent thermal properties with glass transition temperatures (Tg) of 110 °C, melting temperatures (Tm) of 217 °C of, and degradation temperature (Td) of 330 °C. 3Me-1Bu-TPADA was used as an emitting layer in non-doped devices: ITO/2-TNATA (60 nm)/NPB (15 nm)/3Me-1Bu-TPADA (30 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm). The 3Me-1Bu-TPADA device showed luminance efficiency of 6.05 cd/A, EQE of 2.68% at 10 mA/cm2.


Author(s):  
Miguel-Ángel Velázquez-Carmona ◽  
Sylvain Bernès ◽  
Francisco Javier Ríos-Merino ◽  
Yasmi Reyes Ortega

The here crystallized oxamide was previously characterized as an unsolvated species [Jímenez-Pérezet al.(2000).J. Organomet. Chem.614–615, 283–293], and is now reported with methanol as a solvent of crystallization, C30H44N2O4·CH3OH, in a different space group. The introduction of the solvent influences neither the molecular symmetry of the oxamide, which remains centrosymmetric, nor the molecular conformation. However, the unsolvated molecule crystallized as an ordered system, while many parts of the solvated crystal are disordered. The hydroxy group in the oxamide is disordered over two chemically equivalent positions, with occupancies 0.696 (4):0.304 (4); onetert-butyl group is disordered by rotation about the C—C bond, and was modelled with three sites for each methyl group, each one with occupancy 1/3. Finally, the methanol solvent, which lies on a twofold axis, is disordered by symmetry. The disorder affecting hydroxy groups and the solvent of crystallization allows the formation of numerous supramolecular motifs using four hydrogen bonds, with N—H and O—H groups as donors and the oxamide and methanol molecule as acceptors.


Sign in / Sign up

Export Citation Format

Share Document