degradation temperature
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 148)

H-INDEX

13
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 104
Author(s):  
Mpho Phillip Motloung ◽  
Tladi Gideon Mofokeng ◽  
Suprakas Sinha Ray

Poly (ε-caprolactone) (PCL)/hydroxyapatite (HAP) composites represent a novel material with desired properties for various applications. In this work, PCL/HAP composites at low loadings were developed through melt-extrusion processing. The effects of HAP loading on viscoelastic, thermal, structural, and mechanical properties of PCL were examined. The morphological analysis revealed better dispersion of HAP at low loadings, while aggregation was noticed at high concentrations. The complex viscosity of the prepared composites increased with increasing concentration of HAP. In addition, a significant decrease in crystallinity was observed upon increase in HAP loading. However, the elongation at break increased with increasing the concentration of HAP, probably due to a decrease in crystallinity. The onset thermal degradation temperature of PCL was enhanced at low concentrations of HAP, whereas a decrease was observed at high loading. Overall, different degrees of HAP dispersion resulted into specific property improvement.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7682
Author(s):  
Serena Gabrielli ◽  
Genny Pastore ◽  
Francesca Stella ◽  
Enrico Marcantoni ◽  
Fabrizio Sarasini ◽  
...  

A poly(urethane-acrylate) polymer (PUA) was synthesized, and a sufficiently high molecular weight starting from urethane-acrylate oligomer (UAO) was obtained. PUA was then loaded with two types of powdered ligno-cellulosic waste, namely from licorice root and palm leaf, in amounts of 1, 5 and 10%, and the obtained composites were chemically and mechanically characterized. FTIR analysis of final PUA synthesized used for the composite production confirmed the new bonds formed during the polymerization process. The degradation temperatures of the two types of waste used were in line with what observed in most common natural fibers with an onset at 270 °C for licorice waste, and at 290 °C for palm leaf one. The former was more abundant in cellulose (44% vs. 12% lignin), whilst the latter was richer in lignin (30% vs. 26% cellulose). In the composites, only a limited reduction of degradation temperature was observed for palm leaf waste addition and some dispersion issues are observed for licorice root, leading to fluctuating results. Tensile performance of the composites indicates some reduction with respect to the pure polymer in terms of tensile strength, though stabilizing between data with 5 and 10% filler. In contrast, Shore A hardness of both composites slightly increases with higher filler content, while in stiffness-driven applications licorice-based composites showed potential due to an increase up to 50% compared to neat PUA. In general terms, the fracture surfaces tend to become rougher with filler introduction, which indicates the need for optimizing interfacial adhesion.


2021 ◽  
Vol 15 (4) ◽  
pp. 8518-8528
Author(s):  
S. Gnanasekaran ◽  
Noor Ida Amalina Ahamad Nordin ◽  
M.M.M. Hamidi ◽  
J.H. Shariffuddin

Pineapple leaves fibre (PALF) is one of the natural fibre that has high potential to substitute non-renewable synthetic fibre in thermoplastic products. The PALF were alkali treated with different concentrations of NaOH. Untreated and alkali treated PALF were characterized using Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) to determine the thermal stability and surface morphology of the fibres respectively. Biocomposites were prepared by reinforced alkali treated and untreated PALF with polypropylene (PP) matrix. Tensile properties and water absorption analysis of PALF/PP biocomposites were studied. Biocomposite with 8 wt.% of alkali treated PALF express excellent thermal stability, with maximum degradation temperature at 270 ℃ which is a 7.17% improvement compared to untreated PALF. This biocomposite also had increased tensile strength (116 MPa) with 43% improvement compared to untreated PALF/PP (66 MPa) biocomposite and had lower water absorption at 6% compared to untreated biocomposite which at 21%. Hence, alkali treated PALF is able to improve the characteristic of PALF and increase the compatibility between fibre and polymer by reducing hemicellulose and lignin components.


Author(s):  
Mohammed Iqbal Shueb ◽  
Mohd Edeerozey Abd Manaf ◽  
Mahathir Mohamed ◽  
Noraiham Mohamad ◽  
Jeeferie Abd Razak ◽  
...  

Thermal behaviour of graphene nanoplatelets (GNP) reinforced nylon 66 nanocomposites were investigated using differential calorimetric scanning (DSC), thermogravimetric analyzer (TGA) and dynamic mechanical analysis (DMA). The influence of low content GNP on thermal properties of GNP/nylon 66 nanocomposites was studied for low GNP content (0.3, 0.5 and 1.0 wt%). DSC results indicate that addition of GNP increases crystallization temperature and degree of crystallinity of the nanocomposites. Thermal stability and mass loss were studied through TGA analysis. The results show that thermal stability and weight loss of GNP/nylon 66 nanocomposites slightly improve with the GNP addition with an increase in the onset of degradation temperature as much as 10 °C. DMA analysis shows that GNP in the nylon 66 matrix act similar to plasticizer; it decreases the storage modulus and glass transition temperatures of the nanocomposites. GNP addition also reduces tan δ indicating an improvement in the damping property of the nanocomposites. Overall, this study concludes that a minimal amount of 0.3 wt% of GNP is effective in improving the thermal properties of nylon 66 composites.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 236
Author(s):  
Haymanot Enawgaw ◽  
Tamrat Tesfaye ◽  
Kelem Tiessasie Yilma ◽  
Derseh Yilie Limeneh

Cellulose-based hydrogels were prepared by the extraction of cellulose from corncobs after the removal of lignin and hemicellulose with the use of alkali–acid treatment. Acrylate-based hydrogels presently available for personal hygiene uses are not biodegradable. In this study, a biodegradable cellulose-co-AMPS personal hygiene hydrogel was synthesized. The hydrogel was synthesized by graft co-polymerization of 2-acrylamido2-methyl propane sulfonic acid onto corncob cellulose by using potassium persulfate (KPS) as an initiator and borax decahydrate (Na2B4O7·10H2O) as a cross-linking agent. Structural and functional characteristics of the hydrogel such as swelling measurements, antimicrobial tests, FTIR spectra and thermogravimetric analysis were done. The hydrogel showed an average swelling ratio of 279.6 g/g to water and 83.3 g/g to a urine solution with a 97% gel fraction. The hydrogel displayed no clear inhibition zone and did not support the growth of bacteria, Gram-positive or -negative. The FT-IR spectra of the hydrogel confirmed the grafting of an AMPS co-polymer onto cellulose chains. The thermal properties of the hydrogel showed three-step degradation, with a complete degradation temperature of 575 °C.


2021 ◽  
Vol 904 ◽  
pp. 207-212
Author(s):  
Atiwat Wiriya-Amornchai ◽  
Prathumrat Nu-Yang ◽  
Phawarisa Raksawong ◽  
Phonlakrit Salakkham ◽  
Supakrid Katib ◽  
...  

In this paper, the composites between polylactic acid (PLA) and eggshell powder (ESP) from the chicken shell were prepared by melt blending method in the internal mixer and then injection molded to produce the bio-composite specimen. The effect of the ESP concentration in the composites was investigated on the mechanical and thermal behaviors. The results indicated that the tensile strength and elongation decreased with increased ESP loading. Furthermore, the impact strength was not altered for PLA filled system with 10-30% of ESP. At the 10%wt of ESP in the PLA-composites was not significantly different of the onset (Tonset) and maximum degradation temperature (Td) from neat PLA but at higher ESP loading, Tonset and Td tend to decrease, therefore ESP could be able to accelerate degradation in the composites. The cold crystallization (Tcc) showed decreasing when the ESP was incorporate about 10-30 %wt. Otherwise, the incorporation of ESP affected on the declination of crystallinity in the PLA composites. The morphology, size and elements were examined using a scanning electron microscope (SEM) coupled with an energy dispersive X-ray system (EDX). It was indicated that agglomeration of ESP in the PLA matrix.


2021 ◽  
Author(s):  
Abbas Saifee Valsadwala ◽  
Sriram Sriniva ◽  
Surya Rajan Balachandran ◽  
Shamshath Begum ◽  
Asit Baran Samui ◽  
...  

Abstract In this investigation, the shell powder of Littorina littorea commonly called periwinkle was used as an eco-benign filler in High-Density Polyethylene (HDPE) to form periwinkle/HDPE composites (PHPC). Understanding the effect of different particle sizes of periwinkle shell powder (PSP) and optimizing their influence on PHPC is the main scope of work. Periwinkle shell (PS) particle sizes from <53 μm to 150 μm were chosen as reinforcement. The different PSP size like <53 μm, 53 μm, 75 μm, 90 μm, 105 μm and 150 μm chosen in this study were named as PHPCL53, PHPC53, PHPC75, PHPC90, PHPC105, and PHPC150 respectively. The composites were fabricated by incorporating 1 weight % of PSP into HDPE matrix using compression molding technique and then subjected to morphological, thermal, and mechanical characterizations. Morphology studies using scanning electron microscope (SEM) confirms 150 μm PSP had best dispersion whereas 75 μm PSP resulted with agglomeration. PSP had little influence on the thermal stability of HDPE except for PHPC150 which showed rise in degradation temperature when compared to the neat sample. Mechanical properties such as hardness, Young’s modulus, impact strength, and flexural modulus were enhanced by the addition of PSP. Whereas, a decrease was noted in elongation at break (%) and flexural strength of PHPC indicating the stiffening effect of filler on HDPE. In order to understand the particle size influence better, the extension evaluation method (EEM) was performed for all samples and PHPC150 was found to be the best performing among all particle sizes.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3927
Author(s):  
Andrés Felipe Ochica Larrota ◽  
Ricardo Vera-Graziano ◽  
Alex López-Córdoba ◽  
Edwin Yesid Gómez-Pachón

Sugarcane bagasse (SCB) is an abundant by-product of sugar refining that can be utilized as a raw material for cellulose isolation for several industrial applications. Electrospinning has garnered attention in recent years because it allows the preparation of cellulosic materials with unique properties. In this study, cellulose was isolated from sugarcane bagasse and acetylated to fabricate fine acetate cellulose fibers through electrospinning. Subsequently, the electrospun fibers were deacetylated and cationized in order to produce functionalized materials with potential textile applications. The functional fibers were colored with an anionic dye (vinyl sulfone) with and without the presence of salt and were evaluated according to dye fixation, color attributes, morphological characteristics, and thermal stability. Cationic cellulose fibers that were dyed without added salt were found to be brighter and demonstrated better color fixation than those with added salt. In addition, morphological analysis performed using scanning electron microscopy demonstrated that cationized fibers dyed without added salt were better preserved at this stage. The cationic fiber also evidenced a high-temperature resistance, exhibiting a degradation temperature above 236 °C. The results suggest that cellulose fibers dyed in this manner can potentially be considered for use in textile applications due to their suitable dye fixation and tunable porosity (i.e., breathability).


Author(s):  
Daniel Silalahi ◽  
Minto Supeno ◽  
Muhammad Taufik

Cracking catalytic palm oil (CPO) into hydrocarbon fuel by saponification pretreatment has been carried out with bentonite and limestone-based catalysts. The catalysts used were Na-bentonite and Limestone NTT which were first analyzed using XRF, XRD, and SEM. Saponification pretreatment was carried out on CPO to facilitate the cracking process using a catalyst. The saponification product in the form of a mixture of soap and glycerol was then analyzed by DSC to determine the degradation temperature. Catalytic cracking is carried out in two stages, namely, the first stage hydrocracking at a temperature of 250-350°C using a stainless steel reactor is the source of catalyst Fe / Cr. The resulting distillate was then cracked again using a Na-bentonite catalyst and a TKNTT catalyst. The resulting fuel is a hydrocarbon fuel which is confirmed from the FT-IR results which indicate the presence of long-chain hydrocarbon compounds. This data is also supported by the results of the GC-MS analysis which shows that the fuel fraction produced is mostly biogasoline. Where cracking using a Na-bentonite catalyst produces a biogasoline fraction of 61.36% and a biodiesel fraction of 38.63%, THAT produces a biogasoline fraction of 88.88% and a biodiesel fraction of 11.11%. The characteristics of the hydrocarbon fuels that have been analyzed show that the calorific value of combustion is 6101 cal/g which is determined using a bomb calorimeter, and the cetane index is 62 which is analyzed using CCI. Both types of hydrocarbon fuels have met the physical requirements that must be possessed by biogasoline fuel based on SNI standards.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2998
Author(s):  
Sheik Ambarine Banon Auckloo ◽  
Khanisya Palaniandy ◽  
Yew Mun Hung ◽  
Giuseppe Lazzara ◽  
Siang-Piao Chai ◽  
...  

This study, for the first time, focused on the fabrication of nonporous polyurea thin films (~200 microns) using the electrospinning method as a novel approach for coating applications. Multi-walled carbon nanotubes (MWCNTs) and hydrophilic-fumed nanosilica (HFNS) were added separately into electrospun polyurea films as nano-reinforcing fillers for the enhancement of properties. Neat polyurea films demonstrated a tensile strength of 14 MPa with an elongation of 360%. At a loading of 0.2% of MWCNTs, the highest tensile strength of 21 MPa and elongation of 402% were obtained, while the water contact angle remained almost unchanged (89°). Surface morphology analysis indicated that the production of polyurea fibers during electrospinning bonded together upon curing, leading to a nonporous film. Neat polyurea exhibited high thermal resistance with a degradation temperature of 380 °C. Upon reinforcement with 0.2% of MWCNTs and 0.4% of HFNS, it increased by ~7 °C. The storage modulus increased by 42 MPa with the addition of 0.2% of MWCNTs, implying a superior viscoelasticity of polyurea nanocomposite films. The results were benchmarked with anti-corrosive polymer coatings from the literature, revealing that the production of nonporous polyurea coatings with robust strength, elasticity, and thermal properties was achieved. Electrospun polyurea coatings are promising candidates as flexible anti-corrosive coatings for heat exchanges and electrical wires.


Sign in / Sign up

Export Citation Format

Share Document