ChemInform Abstract: HEATS OF REACTION BETWEEN ANILINE AND FORMALDEHYDE BY SOLUTION CALORIMETRY: REACTION IN NEUTRAL MEDIUM

1982 ◽  
Vol 13 (23) ◽  
Author(s):  
K. KISHORE ◽  
K. N. SANTHANALAKSHMI
2019 ◽  
Vol 85 (2) ◽  
pp. 12-16
Author(s):  
I. V. Saunina ◽  
E. N. Gribanov ◽  
E. R. Oskotskaya

The sorption of Hg (II), Cd (II), and As (III) by natural aluminosilicate is studied. It is shown that the mineral absorbs those toxicants in a rather wide pH range, quantitative extraction of analytes being achieved in a neutral or close to neutral medium (pH values range within 7.0 - 8.0; 6.3 - 7.5; 7.4 - 8.5 for Hg (II), As (III), and Cd (II), respectively). The effect of the time of phase contact on the degree of extraction of elements is shown. The sorption capacity of the mineral in optimal conditions of the medium acidity (0.06 mmol/g for mercury, 0.31 mmol/g for cadmium, and 0.52 mmol/g for arsenic) is determined. The distribution coefficients attain values of aboutnX 103-nX 104. A new combined method for determination of Hg (II), Cd (II), and As (III) in natural and waste water is developed and tested. The method consists in a preliminary group sorption concentration of the analytes by aluminosilicate, desorption of the analytes from the surface of the mineral and their subsequent atomic absorption determination. The correctness of the method is verified in analysis of spiked samples. The method is easy to use and exhibits high sensitivity, reproducibility and accuracy of analyte determination. The relative standard deviation does not exceed 0.13. Economic availability and possibility of using domestic sorption materials are the important advantages of the proposed procedure which can be used in the practice of laboratories monitoring the quality and safety of environmental objects.


2019 ◽  
Vol 64 (12) ◽  
pp. 1274-1280
Author(s):  
L. P. Ogorodova ◽  
Yu. D. Gritsenko ◽  
M. F. Vigasina ◽  
A. Yu. Bychkov ◽  
D. A. Ksenofontov ◽  
...  

A thermochemical study of natural calcium and magnesium orthosilicate ─ monticellite (Ca1.00Mg0.95)[SiO4] (Khabarovsk Territory, Russia) was carried out on the Tian-Calvet microcalorimeter. The enthalpy of formation from the elements fHоel(298.15 K) = -2238.4 4.5 kJ / mol was determined by the method of high-temperature melt solution calorimetry. The enthalpy and Gibbs energy of formation of monticellite of the theoretical composition of CaMg[SiO4] are calculated: fH0el(298.15 K) = -2248.4 4.5 kJ/mol and fG0el(298.15 K) = -2130.5 4.5 kJ/mol.


THE BULLETIN ◽  
2019 ◽  
Vol 2 (378) ◽  
Author(s):  
Abduali Baeshov ◽  
Gulnar Aibolova ◽  
Elmira Tuleshova ◽  
M. A. Ozler

1993 ◽  
Vol 58 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Rudolf Zahradník

The energies and heats of ion-molecule reactions have been calculated (MP4/6-31G**//6-31G** or better level) and compared with the experimental values obtained from the heats of formation. Two main types of reactions have been studied: (i) AHn + AHn+• ↔ AHn+1+ + AHn-1• (A = C to F and Si to Cl), (ii) AHn + BHm+• ↔ AHn+1+ + BHm-1• or AHn-1+• + BHm+1+ (A and B = C to F). In contrast to (i), processes of type (ii) permit easy differentiation between the proton transfer and hydrogen atom abstraction mechanisms. A third type of interaction involves reactions with radical anions (A = Li to F); comparison was made with analogous processes with radical cations. A brief comment is made about the influence of the level of computational sophistication on the energies and heats of reaction, as well as on the stabilization energy of a hydrogen bonded intermediate, a structure which is similar to that of the reaction products.


2007 ◽  
Vol 71 (9) ◽  
pp. 2124-2129 ◽  
Author(s):  
Kaoru ABE ◽  
Toshisada KUSHIBIKI ◽  
Hajime MATSUE ◽  
Ken-Ichi FURUKAWA ◽  
Shigeru MOTOMURA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document