ChemInform Abstract: Photochemical Reactions of Pyrimidin-2(1H)-ones: Inter- and Intramolecular Hydrogen Abstraction by the Nitrogen of Imino Group.

1983 ◽  
Vol 14 (17) ◽  
Author(s):  
T. NISHIO ◽  
K. KATAHIRA ◽  
Y. OMOTE
1978 ◽  
Vol 56 (15) ◽  
pp. 1970-1984 ◽  
Author(s):  
D. R. Arnold ◽  
C. P. Hadjiantoniou

The electronic absorption and phosphorescence emission spectra and the photochemical reactivity of several methyl-3-benzoylthiophenes (2- and 4-methyl-3-benzoylthiophene (1, 2), 2,5-dimethyl-3-benzoylthiophene (3), and 3-(2-methylbenzoyl)thiophene (4)) have been studied. Partial state diagrams have been constructed. The lowest energy absorption in hexane solution in every case is the carbonyl n → π* transition. The two lowest triplet states of these ketones are close in energy and, in fact, the nature of the emitting triplet (n,π* or π,π*) depends upon the position of methyl substitution and upon the solvent. The photochemical reactions studied include intramolecular hydrogen abstraction (revealed by deuterium exchange in the adjacent methyl group upon irradiation in perdeuteriomethanol solution), photocycloaddition of dimethyl acetylenedicarboxylate to the thiophene ring, and photocycloaddition of isobutylene to the carbonyl group. Generalizations, potentially useful for predicting photochemical reactivity of these and other aromatic ketones are summarized.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 461 ◽  
Author(s):  
Maciej Spiegel ◽  
Tadeusz Andruniów ◽  
Zbigniew Sroka

Flavonoids are known for their antiradical capacity, and this ability is strongly structure-dependent. In this research, the activity of flavones and flavonols in a water solvent was studied with the density functional theory methods. These included examination of flavonoids’ molecular and radical structures with natural bonding orbitals analysis, spin density analysis and frontier molecular orbitals theory. Calculations of determinants were performed: specific, for the three possible mechanisms of action—hydrogen atom transfer (HAT), electron transfer–proton transfer (ETPT) and sequential proton loss electron transfer (SPLET); and the unspecific—reorganization enthalpy (RE) and hydrogen abstraction enthalpy (HAE). Intramolecular hydrogen bonding, catechol moiety activity and the probability of electron density swap between rings were all established. Hydrogen bonding seems to be much more important than the conjugation effect, because some structures tends to form more intramolecular hydrogen bonds instead of being completely planar. The very first hydrogen abstraction mechanism in a water solvent is SPLET, and the most privileged abstraction site, indicated by HAE, can be associated with the C3 hydroxyl group of flavonols and C4’ hydroxyl group of flavones. For the catechol moiety, an intramolecular reorganization to an o-benzoquinone-like structure occurs, and the ETPT is favored as the second abstraction mechanism.


Sign in / Sign up

Export Citation Format

Share Document