cyclic transition state
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yuyang Dong ◽  
Alexander Schuppe ◽  
Binh Khanh Mai ◽  
Peng Liu ◽  
Stephen Buchwald

The selective reductive coupling of vinyl arenes and ketones represents a versatile approach for the rapid construction of enantiomerically enriched tertiary alcohols. Herein, we demonstrate a CuH-catalyzed regiodivergent coupling of vinyl arenes and ketones, in which the selectivity is controlled by the ancillary ligand. This approach leverages an in situ generated benzyl- or dearomatized allyl-Cu intermediate, yielding either the dearomatized or exocyclic addition products, respectively. The method exhibits excellent regio-, diastereo- and enantioselectivity, and tolerates a range of common functional groups and heterocycles. Computational studies suggest that the regio- and enantioselectivity are controlled by the ancillary ligand, while the diastereoselectivity is enforced by steric interactions between the alkyl-Cu intermediate and ketone substrates in a six-membered cyclic transition state.


2021 ◽  
Author(s):  
Yuyang Dong ◽  
Alexander Schuppe ◽  
Binh Khanh Mai ◽  
Peng Liu ◽  
Stephen Buchwald

The selective reductive coupling of vinyl arenes and ketones represents a versatile approach for the rapid construction of enantiomerically enriched tertiary alcohols. Herein, we demonstrate a CuH-catalyzed regiodivergent coupling of vinyl arenes and ketones, in which the selectivity is controlled by the ancillary ligand. This approach leverages an in situ generated benzyl- or dearomatized allyl-Cu intermediate, yielding either the dearomatized or exocyclic addition products, respectively. The method exhibits excellent regio-, diastereo- and enantioselectivity, and tolerates a range of common functional groups and heterocycles. Computational studies suggest that the regio- and enantioselectivity are controlled by the ancillary ligand, while the diastereoselectivity is enforced by steric interactions between the alkyl-Cu intermediate and ketone substrates in a six-membered cyclic transition state.


2020 ◽  
Vol 63 (8) ◽  
pp. 86-93
Author(s):  
Ludmila B. Kochetova ◽  
◽  
Tatyana P. Kustova ◽  
Al’ona A. Kruglyakova ◽  
◽  
...  

Quantum-chemical simulation of mechanisms of 3-nitrobenzenesulfonic acid chloride interactions with benzoic and benzenesulfonic acids amides in the gas phase was carried out by calculating the three-dimensional potential energy surfaces of these reactions (DFT//B3LYP/6-311G(d,p) level). It was found that in both of the processes considered, a single route can be realized containing a single saddle point and starting as an axial attack of the nucleophile. Further approach of the reagent molecules proceeds with a decrease in the angle of nucleophilic attack to ≈ 130o in the reaction transition state and ≈ 100o – in the reaction product – sulfonamide. It was shown that the studied reactions proceed according to the bimolecular concerted mechanism of nucleophilic substitution SN2, which implies the formation of a single transition state along the reaction pathway. It was found that the geometric structure of the reaction centers in the transition states of the processes is intermediate between the trigonal bipyramid and the tetragonal pyramid, which is explained by the change in the angle of nucleophilic attack when the reagent molecules approach each other. It was found that in benzamide sulfonylation reaction, a cyclic transition state is formed, in which the forming and loosening bonds lie in the same plane, and the H-Cl distance corresponds to the length of the hydrogen bond. In benzenesulfonamide reaction with 3-nitrobenzenesulfonyl chloride, the transition state is not cyclic. The activation energies of the reactions are calculated; they were 155 kJ/mol in the benzamide sulfonylation reaction and 150 kJ/mol in the process with the participation of benzenesulfonic acid amide. The closeness of the obtained values is associated with the similar structure of the amide and sulfamide groups containing electrophilic centers near the amino groups. A significant difference in the rate constants of the studied reactions, which was found earlier, when they occur in aqueous dioxane, is explained by the features of –CONH2 and –SO2NH2 groups specific solvation and the contribution of the entropy factor to the reaction rate: the cyclic transition state of the benzamide reaction with 3-nitrobenzenesulfonyl chloride is more ordered in comparison with a non-cyclic transition state of the reaction with benzenesulfonamide participation, which can promote faster occurence of the first process.


2020 ◽  
Author(s):  
Veejendra Yadav

In comparison to the popular pathway involving proton-transfer via a four-centred cyclic transition state structure, the recently proposed overall lower energy pathway involving proton-transfer via a seven-centred cyclic transition state structure followed by Hofmann elimination for the Me<sub>3</sub>N-catalyzed Morita-Baylis-Hillman reaction is applicable to the DABCO-catalyzed reaction equally well. This finding clearly establishes that the zwitterion at the bridge-head in DABCO is well tolerated. Also, the activation free energy of the rate-limiting aldol reaction under DABCO-catalysis is lower than that under Me<sub>3</sub>N-catalysis, suggesting that DABCO is likely a better catalyst to achieve faster conversion.


2020 ◽  
Author(s):  
Veejendra Yadav

In comparison to the popular pathway involving proton-transfer via a four-centred cyclic transition state structure, the recently proposed overall lower energy pathway involving proton-transfer via a seven-centred cyclic transition state structure followed by Hofmann elimination for the Me<sub>3</sub>N-catalyzed Morita-Baylis-Hillman reaction is applicable to the DABCO-catalyzed reaction equally well. This finding clearly establishes that the zwitterion at the bridge-head in DABCO is well tolerated. Also, the activation free energy of the rate-limiting aldol reaction under DABCO-catalysis is lower than that under Me<sub>3</sub>N-catalysis, suggesting that DABCO is likely a better catalyst to achieve faster conversion.


DYNA ◽  
2019 ◽  
Vol 86 (208) ◽  
pp. 126-135
Author(s):  
Astrid Sanchez ◽  
Mauricio Velasquez ◽  
Catherine Batiot-Dupeyrat ◽  
Juan F. Espinal ◽  
Alexander Santamaría

Experimental formation of hydroxyacetone (HA) from glycerol over La2CuO4 catalyst under mild experimental conditions (533 K, N2 atmosphere) was correlated with molecular modeling results with the aim to propose reaction pathways. Based on these results, a novel mechanism in terms of elementary reactions is proposed for gaseous phase process. The results suggest that there are two main routes that contribute to HA formation. The main and more feasible reaction pathway corresponds to the direct 1,2-dehydration of glycerol. The second pathway involves the dehydrogenation of glycerol to produce glyceraldehyde, which is then dehydrated toward HA through the formation of a six-membered cyclic transition state during the hydrogenation step. Finally, the pyruvaldehyde formation pathway was found to be a parallel reaction to the HA formation which could be displaced by tuning the reaction conditions. HA formation as a result of pyruvaldehyde hydrogenation was also proposed, but it was found to be a less important route.


2019 ◽  
Vol 97 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Ik-Hwan Um ◽  
Ae-Ri Bae ◽  
Julian M. Dust

A kinetic study is reported for nucleophilic substitution reactions of Y-substituted-phenyl cinnamates (1a–1h) with a series of primary amines including hydrazine in H2O containing 20 mol % DMSO at 25.0 °C. The Brønsted-type plot for the reaction of 2,4-dinitrophenyl cinnamate (1a) is linear with βnuc = 0.57 except hydrazine, which exhibits positive deviation from the linear correlation (i.e., the α-effect). The Brønsted-type plots for the reactions of 1a–1h with hydrazine and glycylglycine (glygly) are also linear with βlg = –0.71 and –0.87, respectively, when 1a is excluded from the linear correlation. Thus, the reactions have been concluded to proceed through a concerted mechanism on the basis of the linear Brønsted-type plots and magnitudes of the βnuc and βlg values. The α-effect shown by hydrazine is dependent on electronic nature of the substituent Y in the leaving group, e.g., it increases as the substituent Y becomes a weaker electron-withdrawing group (or as basicity of the leaving aryloxide increases), indicating that the α-effect is not due to destabilization of the ground state but mainly due to stabilization of the transition state. A five-membered cyclic TS structure, which could increase nucleofugality of the leaving aryloxide through H-bonding interaction, has been proposed to account for the leaving-group dependent α-effect found in this study. The theories suggested previously to rationalize the α-effect found for the related systems are also discussed.


2018 ◽  
Vol 96 (12) ◽  
pp. 1011-1020 ◽  
Author(s):  
Ik-Hwan Um ◽  
Ji-Hyun Song ◽  
Ae-Ri Bae ◽  
Julian M. Dust

Upward curvature in the kinetic plots of pseudo first-order rate constants (kobsd) vs. [amine] for the aminolysis of aryl phenyl carbonates (5a–5j) in MeCN demonstrates that these reactions proceed via a zwitterionic tetrahedral intermediate (T±) that partitions between catalyzed and uncatalyzed routes to give the products. Yukawa–Tsuno plots for the reactions of 5a–5j with piperidine result in excellent linear correlations with ρY = 4.82 and r = 0.47 for the uncatalyzed reaction versus ρY = 2.21 and r = 0.21 for the catalyzed reaction. Brønsted plots for reactions of 4-(ethoxycarbonyl)-phenyl phenyl carbonate (5f) with a series of cyclic secondary amines exhibit excellent linear correlations with βnuc = 0.87 and 0.58 for the uncatalyzed and catalyzed reactions, respectively. The ΔH‡ and ΔS‡ values are 0.92 kcal/mol and –50.1 cal/mol K, respectively, for the catalyzed reaction of 5f with piperidine. Deuterium kinetic isotope effects found for reactions of 5f with piperidine/deuterated piperidine are 0.84 (uncatalyzed) and 1.42 (catalyzed). Multi-parameter analysis supports a concerted catalytic pathway involving a six-membered cyclic transition state rather than a traditionally accepted stepwise pathway with an anionic intermediate. The current unexpected results, where T± is the essential central intermediate in this aminolysis, contrast with previous calculation studies that deemed T± unstable in gas phase or MeCN.


Proceedings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Viviana Dorn ◽  
Emilio Lorenzo Martínez ◽  
Gabriel Radivoy

Through reducing the system InCl3-Li-DTBB(cat.) in THF at room temperature and in the absence of any additives or anti-caking ligand, we have synthesized indium nanoparticles (InNPs) of about 4 nm. The catalyst was employed in the allylation of carbonyl compounds, giving excellent yields of the corresponding homoallylic alcohols. We have established that the reaction products come from a γ-coupling via a six members cyclic transition state, type Zimmerman–Traxler. Relative to the selectivity, the allylation with crotyl bromide of ortho substituted benzaldehydes (e.g., o-NO2, o-OMe, o-Cl, o-CF3) showed syn selectivity. With the aim to improve the mentioned selectivity, we synthetized o-iPrO-benzaldehyde, and evaluated the reaction with crotyl bromide and InNPs. The homoallylic alcohol 1-(2-isopropoxyphenyl)-2-methylbut-3-en-1-ol was obtained almost quantitatively after 1h as a mixture of the syn- and anti- isomers. The relationship observed by 1H-RMN was 75:25, but we did not know if the syn-isomer was the dominant because the product has not been reported in the scientific literature. Based on this, and in order to determinate which 1H-NMR signals correspond to each isomer, we started computational theoretical and NMR studies. The initial conformational analysis was performed using the semiempirical PM3 method, then we work with the B3LYP functional, applying the 6-31+G* basis set and the solvent effect (chloroform) was evaluated with the PCM model as implemented in Gaussian09. So, we found thirteen low-energy conformations for the syn-diastereomer and six low-energy conformations for the anti-diastereomer. On the other hand, we have carried out NMR experiments such as 1H, 13C, HSQC, to assign the signals of each diastereomer; and experiments such as NOESY, selective NOE, JRes, homo- and hetero-nuclear J-coupled and J-decoupling, to be able to measure coupling constants and establish the structure of each diastereomer.


Sign in / Sign up

Export Citation Format

Share Document