ChemInform Abstract: Theoretical Studies of Diphosphene and Diphosphinylidene in Their Closed-Shell States, Low-Lying Open-Shell Singlet and Triplet States, and Transition States. Search for a Stable Bridged Structure

ChemInform ◽  
1987 ◽  
Vol 18 (8) ◽  
Author(s):  
T. L. ALLEN ◽  
A. C. SCHEINER ◽  
Y. YAMAGUCHI ◽  
H. F. III SCHAEFER
1991 ◽  
Vol 69 (11) ◽  
pp. 1630-1635 ◽  
Author(s):  
Ratnakar K. Gosavi ◽  
Manuel Torres ◽  
Otto P. Strausz

The energies and geometries of the low-lying electronic states of formylmethylene have been calculated at the SCF and CI levels using 6-31G** basis set. In agreement with previous reports and accumulated experimental observations, the ground state is the carbenoid triplet with a planar geometry. Also, in agreement with all previous single configuration SCF and CI calculations, the lowest excited singlet state is computed to be the nonplanar closed shell carbenoid structure. In contrast, accumulated experimental evidence along with previously reported MC–SCF results require this state to be planar. The present calculation predicts the existence of a (σ–σ) 1,3-diradical 1A′ state, which appears to be identical to the MC–SCF lowest singlet state, but this state lies some 11 kcal/mol above the closed shell carbenoid 1A state. Apparently, single configuration SCF methods are inadequate for the correct description of the electronic manifold of formylmethylene. Key words: formylmethylene, singlet and triplet states, ab initio MO calculations, conformers, molecular structure.


2020 ◽  
Author(s):  
Julia Brüggemann ◽  
Christoph R. Jacob

<div>Applications of density functionaltheory (DFT) in computational chemistry rely on an approximate exchange-correlation (xc) functional. However, existing approximations can fail dramatically for open-shell molecules, in particular for transition-metal complexes or radicals. Most importantly, predicting energy-differences between different spin-states with approximate exchange-correlation functionals remains extremely challenging. Formally, it is known that the exact xc functional should be spin-state dependent, but none of the available approximations features such an explicit spin-state dependence [Ch.~R.~Jacob, M.~Reiher, \textit{Int. J. Quantum Chem.}, 2012, \textbf{112}, 3661–3684]. Thus, to find novel approximations for the xc functional for open-shell systems, the development of spin-state dependent xc functionals appears to be a promising avenue. Here, we set out to shed light on the spin-state dependence of the xc functional by investigating the underlying xc holes, which we extract from configuration interaction calculations for model systems. We analyze the similarities and differences between the xc holes of the lowest-energy singlet and triplet states of the dihydrogen molecule, the helium atom, and the lithium dimer. To shed further light on the spin-state dependence of these xc holes we also discuss exact conditions that can be derived from the spin structure of the reduced two-electron density matrix. Altogether, our results suggest several possible routes towards the construction of explicitly spin-state dependent approximations for the xc functional.<br></div><br>


2005 ◽  
Vol 103 (24) ◽  
pp. 3253-3261 ◽  
Author(s):  
Christopher Clouthier ◽  
Friedrich Grein ◽  
Pablo J. Bruna

2020 ◽  
Author(s):  
Julia Brüggemann ◽  
Christoph R. Jacob

<div>Applications of density functionaltheory (DFT) in computational chemistry rely on an approximate exchange-correlation (xc) functional. However, existing approximations can fail dramatically for open-shell molecules, in particular for transition-metal complexes or radicals. Most importantly, predicting energy-differences between different spin-states with approximate exchange-correlation functionals remains extremely challenging. Formally, it is known that the exact xc functional should be spin-state dependent, but none of the available approximations features such an explicit spin-state dependence [Ch.~R.~Jacob, M.~Reiher, \textit{Int. J. Quantum Chem.}, 2012, \textbf{112}, 3661–3684]. Thus, to find novel approximations for the xc functional for open-shell systems, the development of spin-state dependent xc functionals appears to be a promising avenue. Here, we set out to shed light on the spin-state dependence of the xc functional by investigating the underlying xc holes, which we extract from configuration interaction calculations for model systems. We analyze the similarities and differences between the xc holes of the lowest-energy singlet and triplet states of the dihydrogen molecule, the helium atom, and the lithium dimer. To shed further light on the spin-state dependence of these xc holes we also discuss exact conditions that can be derived from the spin structure of the reduced two-electron density matrix. Altogether, our results suggest several possible routes towards the construction of explicitly spin-state dependent approximations for the xc functional.<br></div><br>


2020 ◽  
Author(s):  
Julia Brüggemann ◽  
Christoph R. Jacob

<div>Applications of density functionaltheory (DFT) in computational chemistry rely on an approximate exchange-correlation (xc) functional. However, existing approximations can fail dramatically for open-shell molecules, in particular for transition-metal complexes or radicals. Most importantly, predicting energy-differences between different spin-states with approximate exchange-correlation functionals remains extremely challenging. Formally, it is known that the exact xc functional should be spin-state dependent, but none of the available approximations features such an explicit spin-state dependence [Ch.~R.~Jacob, M.~Reiher, \textit{Int. J. Quantum Chem.}, 2012, \textbf{112}, 3661–3684]. Thus, to find novel approximations for the xc functional for open-shell systems, the development of spin-state dependent xc functionals appears to be a promising avenue. Here, we set out to shed light on the spin-state dependence of the xc functional by investigating the underlying xc holes, which we extract from configuration interaction calculations for model systems. We analyze the similarities and differences between the xc holes of the lowest-energy singlet and triplet states of the dihydrogen molecule, the helium atom, and the lithium dimer. To shed further light on the spin-state dependence of these xc holes we also discuss exact conditions that can be derived from the spin structure of the reduced two-electron density matrix. Altogether, our results suggest several possible routes towards the construction of explicitly spin-state dependent approximations for the xc functional.<br></div><br>


2020 ◽  
Author(s):  
Julia Brüggemann ◽  
Christoph R. Jacob

<div>Applications of density functionaltheory (DFT) in computational chemistry rely on an approximate exchange-correlation (xc) functional. However, existing approximations can fail dramatically for open-shell molecules, in particular for transition-metal complexes or radicals. Most importantly, predicting energy-differences between different spin-states with approximate exchange-correlation functionals remains extremely challenging. Formally, it is known that the exact xc functional should be spin-state dependent, but none of the available approximations features such an explicit spin-state dependence [Ch.~R.~Jacob, M.~Reiher, \textit{Int. J. Quantum Chem.}, 2012, \textbf{112}, 3661–3684]. Thus, to find novel approximations for the xc functional for open-shell systems, the development of spin-state dependent xc functionals appears to be a promising avenue. Here, we set out to shed light on the spin-state dependence of the xc functional by investigating the underlying xc holes, which we extract from configuration interaction calculations for model systems. We analyze the similarities and differences between the xc holes of the lowest-energy singlet and triplet states of the dihydrogen molecule, the helium atom, and the lithium dimer. To shed further light on the spin-state dependence of these xc holes we also discuss exact conditions that can be derived from the spin structure of the reduced two-electron density matrix. Altogether, our results suggest several possible routes towards the construction of explicitly spin-state dependent approximations for the xc functional.<br></div><br>


Author(s):  
М. Гайсак ◽  
М. Гнатич ◽  
Ю. Федорняк

1979 ◽  
Vol 34 (3) ◽  
pp. 495-501 ◽  
Author(s):  
C. Wesdemiotis ◽  
H. Schwarz ◽  
C. C. Van de Sande ◽  
F. Van Gaever

Abstract The investigation of several 13carbon and deuterium labelled n-butyl and n-pentyl benzenes demonstrate that chemical ionization (reagent gas: methane) induces specific carbon-carbon bond cleavages of the alkyl group. The extent of competing reaction channels as for instance direct alkene elimination versus dealkylation/reprotonation is analyzed. Partial hydrogen exchange processes between reagent ions and substrate molecules are restricted to the phenyl ring. Intramolecular exchange reactions between the side chain and the aromatic ring which are typical for the open shell molecular ions of alkyl benzenes are not observed for analogous closed shell cations.


Sign in / Sign up

Export Citation Format

Share Document